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Abstract—In this paper, we consider the use of lattice

[3], Poltyrev derives the maximum noise variance that éckatt

codes over Eisenstein integers for implementing a compute- can tolerate while maintaining reliable communication rove

and-forward protocol in wireless networks when channel stée
information is not available at the transmitter. We extend
the compute-and-forward paradigm of Nazer and Gastpar to
decoding Eisenstein integer combinations of transmitted mssages

the unconstrained point-to-point AWGN channel, which is
referred to as the Poltyrev limit in literature. Loeligeosred
the existence of lattices that achieve the Poltyrev limit by

at relays by proving the existence of a sequence of pairs of means of Construction A in_[4]. Then, Eret al, showed

nested lattices over Eisenstein integers in which the coass
lattice is good for covering and the fine lattice can achievehe

Poltyrev limit. Using this result, we show that both the outaje

performance and error-correcting performance of nested ldtice

codebooks over Eisenstein integers surpasses lattice cbdeks

over integers considered by Nazer and Gastpar with no additinal

computational complexity.

Index Terms—Compute-and-Forward, Lattice codes, Eisen-
stein integers

I. INTRODUCTION

that there exists lattices which are simultaneously goad fo
guantization and can achieve the Poltyrev limit[in [5] which
made it possible to construct nested lattice codes that were
able to achieve a rate of log(1+ SNR) over the point-
to-point AWGN channel. There has also been great interest
in constructing lattice codes with reasonable encoding and
decoding complexities such as Signal Codes and Low Density
Lattice Codes[[6],[[7].

In a bidirectional relay network when channel state infor-
mation is available at the transmitters, the transmittens c
compensate for the channel gains and the relay can decode

Compute-and-forward is a novel relaying paradigm in wirgp the sum of the transmitted signals, which is a special
less communications in which relays in a network directlyase of compute-and-forward. For this system model, it was
compute or decode functions of signals transmitted froghown that an exchange rate dflog (3 + SNR) can be

multiple transmitters and forward them to a central desitma

achieved using nested lattice codes at the transmitteishvsh

One of the most effective ways to implement a compute-angptimal for asymptotically large signal-to-noise ratioslaro-
forward scheme is to employ lattice codes at each transmitiides substantial gains over other relaying paradigms ssch

Since a lattice is closed under integer addition, latticdeso
are naturally suited to decoding integer linear combimestiof
transmitted signals.

amplify-and-forward and decode-and-forwerd [8], [9]. O],
a novel compute-and-forward implementation is proposed fo
the K x K AWGN interference network where channel state

Lattice codes have been shown to be optimal for sevejaformation is available at the transmitters, which achiethe
problems in communications including coding for the pointy|| x degrees of freedom.
to-point additive white Gaussian noise (AWGN) channel [1] we consider the case when channel state information is not
and coding with side information problems such as the dirgyailable at the transmitters. In this case, an effectivg wa
paper coding problem and Wyner-Ziv problem [2]. The corp implement a compute-and-forward scheme is to allow the
struction of optimal lattice codes for these problems regali relay to adaptively choose the integer coefficients dependi
a lattice that is good for channel coding. Since a lattice hg# the channel coefficients. Nazer and Gastpar have inteatiuc
unconstrained power, goodness for channel coding is medsuind analyzed such a scheme which uses lattices over integers

using Poltyrev’s idea of the unconstrained AWGN channel.
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Wihd they have derived achievable information rates’in [11].
In [12], Feng, Silva and Kschischang have introduced an
algebraic framework for designing lattice codes for comaput
and-forward. The framework ir_[12] is quite general in the
sense that every lattice partition based compute-andafaiw
scheme can be put into this framework, including the one by
Nazer and Gastpar in [11]. However, [12] does not provide a
means to identify good lattice partition based schemes.

In this paper, we contribute to the literature by identifyen
lattice partition based compute-and-forward scheme wisch
particularly good for approximating channel coefficientsnf
the complex field. Our scheme can be regarded as an extension
of the scheme in_[11] to lattices over Eisenstein integers. W



show that an improvement in outage performance and errér- Notational Convention
correcting performance can be obtained compared to usin
lattices over integers. We proceed by proving the existen
of a sequence of nested lattices over Eisenstein integer

gl'hroughout the paper, we ugeto denote the field of real
ffimbers.C to denote the field of complex numbers, afigl

. T . %d"Henote a finite field of size. Z, Z[i], andZ|w] are used to
Wh'.Ch the_coarse lattice is g.oo.d for-cover.mg and the f'n(fenote the set of integers, Gaussian integers, and Eigenste
lattice achieves the Poltyrev limit. Using this result, wanc . tegers, respectively. We use underlined variables toten

- ; 0 [
show similar results to those iLT11] with integers reIOIaCe\aectors and boldface uppercase variables to denote mtrice
by Eisenstein integers. The main improvement in outage and and X respectively. We denote th#" column of a

error-correcting performance is a consequence of that ske Uatrix X as X.. Also. we use superscrigf to denote the
( )

of lattices over Eisenstein integers permits the relay tmde Hermitian operation, e.gz" andX* . We definelog™ (x) £

to a linear combination of the transmitted signals where tr}gax(logQ(I)’O) and denote the Euclidean metric as||. We

coefficients are Eisenstein integers, which quantize Oﬁamaenote the all zero vector iR™ as0 and then x n identity
coefficients better than Gaussian integers. matrix asI. We denote the volume of a bounded regiorc

Recently, we became aware of an independent work y as \Vol(E) and denote the-dimensional sphere of radius
Sunet. al. [13] where lattice network codes over Eisensteip centered af) as B(r)& {s : || <.

integers are also considered. The main focus_in [13] is the
analysis of the decoding error probability, which suggests
that lattice network codes built over Eisenstein integers ¢

provide significant coding gains over lattice network codes\\e consider an AWGN network as shown in Fig. 1 where
built over Gaussian integers. Our work differs from |[13}, source nodes, S.,..., Sy wish to transmit information

in the following ways. While their focus is on constructingg ps relay nodesD;, D,,...,Dy, where M > L. It is

finite constellations from lattice partitions which aretable assumed that relay nodes cannot collaborate with each other
for compute-and-forward, we consider construction ofde and are noiselessly connected to a final destination irteztes
(infinite constellations) over Eisenstein integers andwshan the individual messages sent from all the source nodes.
the optimality of such construction. Moreover, their caglinThe objective of the relay nodes is to facilitate communézat

scheme can be regarded as the concatenation of a linear ag&@veen the source nodes and the final destination.
over an appropriate finite field and a constellation carvethfr

a lattice partition. On the other hand, our scheme is a more z; 4] Y,

Il. SYSTEM MODEL

general one which is formed by the quotient group of a lattice! fy

over Eisenstein integers and its sublattice. It can be shbain

the scheme in[[13] is a special case of ours with hypercube

shapinE. This generalization is imperative in the sense thag, R

it allows us to show the achievable computation rates if 0 Lon

would use such lattices for compute-and-forward. —
The structure of our paper is as follows. In Section] I-A,

we introduce the notation that will be used throughout tHéL 7

paper. In Sectioflll, we present the system model that will be M

considered. In Section]ll, we provide some background on
lattices and lattice codes. In Sectibn] IV, we discuss Nazer ) )

, 1 Fig. 1. The AWGN Network whereSy, Sa,..., Sy, wish to transmit
and _Gastpars fr_amework for C(_)mpute-and_-forwctrq [_11]. R formation to D1, Da,....Dyy. The channel between thg and Dy, is
Section[¥, we discuss how lattices over Eisenstein integeksioted as,,,;.

can be used for compute-and-forward in Nazer and Gastpar’s

framework and what properties of these lattices are reduire \we denote the information vector at the source ndie
in order to achieve computation rates formulated similaoly g w, € FX. Without loss of generality, we assume that the
those in [11]. In Sectio VI, we provide numerical resultfength of the information vector at each transmittéras the
and compare the outage performance and error-correctifyine length:. Each transmitter is equipped with an encoder
performance of lattices over natural integers and lattmes ¢, . F% — C" that mapsw, to an n-dimensional complex
Eisenstein integers in compute-and-forward. In Appefdix Aodewordz; = & (w,). Each codeword is subject to the power
we introduce the notation that is used in Appendix B anghnstraint

Appendix [@, we prove that there exist a nested pair of

Eisenstein lattices which the coarse lattice is good foedog

and the fine lattice achieves the Poltyrev limit. E||z;||* < nP. 1)

The message rat® of each transmitter is the length of its

IHere, we use the term “hypercube shaping” o denote a scheing message in bits normalized by the number of channel uses,

a properly scaled version of Eisenstein integers as shajgioarse) lattice. k
Thus, whenZ or Z[:] are considered, the shape is a hypercube. However, it R = —loggq. @)
is in fact not a hypercube E[w] is considered. n



Due to the superposition nature of the wireless medium, each I1l. BACKGROUND ONLATTICES

relay m observes Due to the fact that the coding scheme that will be
L considered heavily relies on lattices, we now provide some
y, = Z hpiZy + Zps (3) background knowledge on lattices. For more details orckti
1=1 please refer to [14]/]5], and[1].

where h,,,; € C is the channel coefficient betwedn,, and Definition 4 (Lattice ovefZ): An n-dimensional lattice

S;. As it can be observed froni](3), it is assumed that theeer natural integersA(™), is a discrete set of points iR"

is no inter-symbol interference and dll,,;z, arrive at the such thatA(™ is a discrete additive subgroup &" with
relay simultaneously. Furthermore,, is an n-dimensional rank k wherek < n. Such a lattice can be generated via a
complex vector which consists of identically distributedd.) full rank generator matrilB € R™**

circularly symmetric Gaussian random variables, kg. ~ )y T k

CN(0,1). Let h,, = [Am1,-- -, hme]” denote the vegor of A ={2=Be:eeZ'}. (8)
channel coefficients to relay. from all the source nodes. WeFor notational convenience, we shall drop the supersanipt i
assume that the relay only has the knowledge of the channeA(™ in this paper and denote-dimensional lattices ad.

coefficient from each transmitter to itself, i.é.,, . Also, we refer to lattices over integers Adattices throughout
Each relay attempts to recover the linear combinaﬁgﬂn the paper.

(over[F,) Given a latticeA, we denote theuantizeroperation with

I respect toA as @, the modulusoperation with respect ta

f o= @ (bmiw;) » (4) asmod A, and thefundamental Voronoi regionf A asV,.

-4 We denote thecovering radiusand effective radiusof A as

cov eff i

whereby, € F, and leth,, = (b, - ., bz Typically by § an(_JIrA , respectively. We den;)te treecond momer&nd

are chosen based on the network structure and/or the cha nor[nallzed second momesitA asoj andG (A), respectively.

%8 refer the reader to [14] for these definitions.
Definition 5 (Goodness for coveringA sequence of lat-
tices A is good for coveringf

coefficients. It is desirable for the matrjk,,...,b,,] to be
full-rank which enables eacty;, to be recovered at the final
destination. For eacl,,,, we define the decodgf,, : C* —
IF’; andjm = Gm(ym) is an estimate ofm. Let P denote a lim @ -1 (9)
principal ideal domain irC such asZ[i] or Z[w]. n—oo &Mt

Definition 1 (Average probability of error)Equations These lattices are also commonly referred tdRagers googd
with coefficient vectorsu, , a, ... a,,, where eachs,,, € P%,  gjnce it was first shown by Rogers that such lattices exidt [15

are decoded witlaverage probability of error if Definition 6 (Goodness for quantizationk sequence of
lattices A is good for quantizationf
M
5 1
Pr <e. 5 i = —.
(gl {1,.# im}> ¢ ) Jim G (A) = 5 (10)

Definition 2 (Computation rate of relay:): For a given In other words, the normalized second moment @onverges

channel coefficient vectdt,, and equation coefficient vectort© @ sphere’s normalized second momentias; co. Zamir
a, € PL, the computation rateR (h,,.a,,) is achievable et al, have shown that such a sequence of lattices exist [16].

“m Zmo Zm

at relay m if for any ¢ > 0 and n large enough, there Erézet al. have also shown the existence of such a sequence
exist encoders,, . ... &, and there exists a decodgy, such of lattices and proved that goodness for covering implies

that relaym can recover its desired equation with averagd0dness for quantization![s].

probability of errore as long as the underlying message rate Definition 7 (Lattices that achieve the Poltyrev limiiet
R satisfies z be ann-dimensional independent and identically distributed

(i.i.d) Gaussian vector; ~ N (0, 921 . The effective radius

of z, which we denote as,, is defined as
Due to the fact that the relays cannot collaborate, eacly rela

R<R(h,,.a,,)- (6)

Zmo Zm

picks an integer vectar,, such that? (h,,,, a,,) is maximized. rz = 4/nb3. (11)
Definition 3 (Computation rate of AWGN networl(_mven Consider aZ-lattice A and a lattice point € A, which is
H = [b,....hy] and A = [a,,...,ay], the achievable transmitted across an AWGN channel:
computation rate of an AWGN network is defined as '
R(H,A) = min R(h,.a,), ™ y=atz (12)

_ e The maximum likelihood decoder would decode to the lattice
provided that the matrio (A) = [by,...,by] € ]Fé/XA.I’ point nearest in Euclidean distance go Therefore, an error
whereo : PLM — FIXM is full rank. If [by,...,by] IS would occur only ify leaves the Voronoi region of. Due to
not full rank, R (H, A) = 0. lattice symmetry, this is equivalent toleaving the fundamen-

Note that in this paper, our coding scheme particularly &bnsta| Voronoi regionV, .
ers the ring of Eisenstein integers, i.f.= Z[w]. The reason
will become clear in the following sections. Pe (A1) =Pr{z ¢ Va}, (13)



where P, (A, ri) denotes the probability of error. B. NestedZ-lattices obtained from Construction-Al[1]
A sequence ofZ-lattices A are good for AWGN channel ) o\ pe an ;-dimensional Z-lattice obtained through

. . eff . _ H
coding if for any r, < ri, nh—{réope (A’_Ti) = 0 and this Construction-A with a corresponding generator maixFor
decay may be bounded exponentiallyrin Erezet. al. have 4 givenG ¢ F***. denoteA’ as the corresponding-lattice
shown the existence of such a sequence of lattices|in [5] ained throggh Construction-A using as the generator
they have referred to them &sltyrev good matrix of the underlying linear code. Generate thdattice

Nonetheless, in order to achieve the Poltyrev capacLAyf asA; = BA’. It can be observed that ¢ A, with a
in the unconstrained AWGN channel, it is sufficient fof:oding rate of£ log q.

lim P. (A,ry) =0 foranyr, < r§", ie, P. (A,r,) does
—

not need to decay exponentially as— oco. We refer to such

a sequence of lattices etices that achieve the Poltyrev limit

in this paper. Loeliger has shown the existence of sucltéati  ope way to implement network coding for the system

in [41-_ N . ) . ) model considered in this paper is for each relay to decode
Definition 8 (Sublattice):A Z-lattice A is a sublattice of g w, individually, then form f and forward it through
(nested in) anothef-lattice Ay if A C Ajy. A is referred to the network, which is commonly referred as decode-and-
as thecoarse latticeand A is referred to as théine lattice  forward. As the number of source nodBsincrease, decode-
The quotient group\ /A is referred to as a lattice partitionand-forward is limited by self-interference since othems-

IV. COMPUTE-AND-FORWARD WITH Z-LATTICES

[17]. mitted messages are treated as noise when decoding to
Definition 9 (Nesting ratio):Given a pair ofn-dimensional jndividually. Therefore, one way to mitigate the effect effs
nested lattices\ C Ay, the nesting ratiod is defined as, interference would be for relay: to directly decode tof
1 from y instead of decoding tay,’s individually. Such an
— (M) . (14) appro?:\néh is commonly referred to as compute-and-forward,
Vol(Va,) which was introduced by Nazer and Gastpar in [11] and results

in achieving substantially higher rates than other forward

Definition 10 (Nested Lattice Codeliven a fineZ-lattice paradigms such as amplify-and-forward, decade-and-fuhva

Ay and a coarsé-lattice A, whereA C Ay, anested lattice 4 di tuati
code(Voronoi code), which we refer to a8, is the set of all compress-and-lorward in many situations.

coset leaders irk ; that lie in the fundamental Voronoi region " [11], Nazer and Gastpar use nested lattice codes to
of the coarse lattice, [18]: implement the compute-and-forward paradigm. Since kstic

are closed under integer combinations, the relays attempt t

L=YaNAr={X; : Qa(A;) =0,A; €As}. (15) decode to a linear combination of codewords with integer
coefficients. This can then be shown to correspond to degodin

In other words,L is a set of coset representatives of thfnear combinations over the finite field. We briefly discuss

quotient groupA ; /A. how lattice codes are constructed to implement the compute-
The coding rateof a nested lattice code, denoted ASis  and-forward paradigm iri [11].
defined as, A fine Z-lattice Ay and a coarsg-lattice A nested in\¢, is

constructed as mentioned in Sectlon TlI-B with a coding rate
R = %1og q. If A is simultaneously good for covering and
good for AWGN channel coding, it follows that, is good

A. Construction A forZ-lattices for AWGN channel codind [1]. Botth andA ¢ are scaled such
thato? = P/2. Following this, the lattice codeboak; NV,

R = log?v. (16)

One way to construcZ-lattices is to use the following

procedure, which is referred to &onstruction A[19]: IS gonstructeéjé it its inf i t F2* int
Let ¢ be a natural prime and&,n be integers such that ource nodepartitions [ts information vectan, < Into

R I k H I
k < n. Then, letG € FZXk' w;t,w; € Fy, and maps them to lattice cogewor_ t] €

, : ANV, tively, via a bijecti [
1) Define the discrete codebodk= {z = Gy : y € F’;} 7 MV, respectively, via a bijective mapping

where all operations are ov&y,. Ihus,g e Fi. J(w) = [Bqtg(Gw)] , (17)

2) Generate th&-lattice Ac asA¢ = {A € Z" : A mod

q € C}, where themod operation is applied to eachwherew € F¥, andg is the trivial bijective mapping between
component ofA. {0,1,---,¢—1} andF,. Hencet = ¢ (wf?) .t} = (wf).

3) ScaleAc with ¢~* to obtainA = ¢~ 'Ac. It then constructs dither vectort’, d/, which are uniformly
We would like to note that only the first two steps that we hawdistributed within)’ and subtracts these dither vectors from
stated in Construction A is required to build a lattice, sincthe lattice codewordg/, ¢!, respectively, and transmits the
the third step simply scales the lattice. However when Eréellowing:
et. al. prove the existence of lattices built with Construction A
that are good for covering in[5], they keeff’ approximately — z; = ([QR - le} mod A) +7J ({ﬁ - dﬂ mod A) . (18)
constant as — oo andg — oo, which is possible only if the
third step is used for scaling the lattice. Recall that given a channel coefficient vectgr € C, relay



m observes Theorem 11 (Nazer and Gastparkt relay m, givenh,,, €
L CL andga,, € Z[i]*, a computation rate of
= thzzl + Zpy- (19) o Pa 2\
R(hm7—m) 1Og HQm” _m ) (31)
The relay approxmatesm, in some sense, by a Gaussian =m
integer vector,,, € Z[i]* and its goal will be to recover the i schievable.

following: Given H and assuming that the relays do not cooperate
L with each other, each relay would attempt to pick an integer
v = lz (R (am) tff =S (aml)gﬂl mod A, (20) vectora,, that maximizes its individual computation rate, i.e.
=1 a,, = argmax R(h,,,a,,) in order to maximizeR (H, A).
L a€Zlilk
I R I
U = [Z (S (ami) £ + %(aml)iﬂ] mod A (21) V. COMPUTE-AND-FORWARD WITH LATTICES OVER
=1 EISENSTEININTEGERS
Itproceeds by removing the dithers and scaling the observat The main result in this section is that for some channel
with o, and therefore, realizations, higher information rates than those in Taegil
are achievable. The improved information rate is obtained
gi = (amy ) ZS‘E am) d; — (aml)dll by considering nested lattices over Eisenstein integelishwh
allow themth relay to decode a linear combination of the form
= 4 gfqmw (22) Zle amit;, wherea,,; € Z[w]. This result is made precise in
and Theoren1b.

One of the key challenges in proving this achievability fesu

o L p is to show the existence of nested lattices over Eisenstein
Y.~ (amy ) + Z (ami dz + R (ami) 4 integers, which we refer to @8[w]-lattices, where the coarse
=1 lattice is good for covering and the fine lattice can achieve
=), + Zegm> (23) the Poltyrev limit. We would like to note that, we do not

Jrove the existence df[w]-lattices that are good for AWGN
channel coding, i.e. lattices for which the error prob&pitian

be bounded exponentially im, in this paper. Furthermore, we
do not require the coarse lattice in the sequence of nested
lattices to be simultaneously good for AWGN channel coding

whereq,,, is the MMSE scaling coefficient that minimizes th
variance ofz -‘er . The relay quantlzez;s Z to the
closest lattice. points in the fine latticey modulo the coarse
lattice A and estimates the following:

@ﬁ = [Q (gi)} mod A, (24) and good for covering. In order to state our main theorem, it
s - suffices to show the existence of nes@]-lattices where
Uy = [Q (anﬂ mod A, (25) the coarse lattice is good for covering and the fine lattice

can achieve the Poltyrev limit. A similar result is obtained
in [20], where the coarse lattice is chosen to be good only for

where() denotes the quantization with respectAtg. Finally,
. . R AT . .
the relay mapg;., and#,, to /' and f , respectively, via quantization and the fine lattice to be good for AWGN channel

Pt coding in order to achievé log(1+ SN R) using lattice codes
1N Tl AT 1 1 for the point-to-point AWGN channel.
v = (GTG) Gy (¢([B lumod A])), (26) | what follows, we first provide some preliminaries about
whereuv € F7. Hence, Eisenstein integers and summarize Construction AZfor]-

lattices. Afterwards, we show that nest&fu]-lattices where
L the coarse lattice is good for quantization and the fineckatti
e (ﬁf&) _ fR _ @ (bil@lRGa (_brInl)@lI)v (27) achleyes the PoItyr_ev limit can be obtained through Con-
struction A. The existence result can then be used to prove
Theoreni 1B, which is the main result of this paper. SiAge]
) , (28) quantizesC better tharZ[i], on the average (over the channel

=1 realizations), higher information rates are achievableising
where Z|w]-lattices compared to usirg-lattices. The superiority of
the proposed scheme will be further confirmed in Sedtign VI
b, = R (am) mod g, (29) where we provide numerical results to compare the out-
bl = S (am) mod g. (30) age performance and error-correcting performance otéiti
over natural integers and lattices over Eisenstein integer
Note that bottby', . .., by, ] and[bs, . . ., b},] are required to be compute-and-forward.
full rank so that decoding ea@lﬁ,wl at the final destination
is feasible. A. Preliminaries: Eisenstein Integers

In [11], Nazer and Gastpar show the following theorem An Eisenstein integer is a complex number of the form
using the coding scheme we have described in this sectiony, 4+ p wherea,b € Z andw = —1 14 ] . The ring



of Eisenstein integerZ[w] is a principal ideal domain, i.e, paper using similar proof techniques in [5], we also require
a commutative ring without zero divisors where every idedhe third step which scales the lattice. An example of such
can be generated by a single element. Other well-knownconstruction withk = 1,n = 1,G = [1], 0 = 2 — /3],
principal ideal domains ar& and Z[i]. A unit in Z[w] is ¢ = T and the corresponding ring homomorphism is shown in
one of the following{+1, +w, +w?}. An Eisenstein integes  Fig.[2. In this figure, the green circles represg#iw] and the

is an Eisenstein prime if either one of the following mutyallred lines represent the boundaries of their Voronoi regitins

exclusive conditions hold [21]: can be observed that there are exagtly- |o|* = 7 lattice
1) ois equal to the product of a unit and any natural prim@OintS that belong t&|w] that lie within each Voronoi region
congruent ta2 mod 3. of the lattice points that belong #¥.[w]. It can also be verified
2) |o|? = 3 or |g|? is any natural prime congruenttomod that the mapping (labeling) in Figl 2 frofijw]/oZ[w] to F,
3. , i.e., & is indeed a ring homomorphism. We would like to
An n-dimensionalZ[w]-lattice can be written in terms of g hote that the lattice in Fid.]2 is triviall.[w]. Unfortunately,
complex lattice generator matri® € Cx*: we were not able to provide a less trivial figure with a larger
. dimensionalZ|w]-lattice. This is due to the fact that even a
A ={A=Be:¢e€Zw]"} (32)  two-dimensionalZ[w]-lattice requires four real dimensions to

be drawn, which is not feasible.
B. Construction A folZ[w]-lattices

Let o be an Eisenstein prime witfp|?> = ¢. SinceZ[w] is a

principal ideal domaingZ[w] is an ideal ofZ[w] and together 4 Y ‘
they form the quotient rindZ[w]/oZ[w]. Moreover, sinceo %; A\ % xs |\ X @
is an Eisenstein primegZ[w] is a prime ideal and hence a 3r
maximal ideal (a property for principal ideal domains). $hu /2N % x 2o
the quotient ring is isomorphic to a field 25 @ x < ><3/x4 ><5 3
Z|w]/ 0Z[w] = F,. 33 L
(wl/e2l] = F, R / e (A
i.e., there exists a ring isomorphism Z[w]/oZ|w] — F, [22, \
page 118]. Note thak|w] is the union ofq cosets ofpZ|w] O, s\ % &N I 7
Zw] = U, (eZfw] +5) (34) N R A T VA
s \ \
whereS represents the set qf coset leaders o [w]/oZ[w]. e XZ s % s\ e & g g
One has the canonical ring homomorphism![22, page 11 5 x 5 & x . 5 5
mod oZ[w] : Z|w] — Z|w]/eZ]w] to homomorphically map &b 8 T A
an element inZ[w] to its coset leader. Now composing & % xs ) x, x| x5 @
mod oZ[w] and o, one obtains the ring homomorphism= 4 ‘ LT ‘ LN
-4 -3 -2 -1 0 1 2 3 4

o omod pA : Zw] — F,. Note thaté can be extended to
vectors in a straightforward manner by mapping the elemel
of the vector componentwise to another vector [14, page.197]
We would like to mention that the aforementioned properti
also hold for lattices that are constructed over any other
principal idea_\l dpmain such_a?é or Z[i]. For example,_the Givenn, k, q, we define an(n, k, ¢, Z[w]) ensemble as the
mod ¢ operation in Construction A fdf-lattices also provides set ofZ[w]-lattices obtained through Construction-A where for
a ring homomorphism. We now define Construction A fogach of these lattice&,; are i.i.d with a uniform distribution
Z|w]-lattices as follows. overF,.

Let ¢ be an Eisenstein prime angd= |of?. Note thatg is  Theorem 12:A lattice A drawn from an (n, k, ¢, Z[w])
either a natural prime or the square of a natural prime. Alghsemble, wherd < n but grows faster thaog? n, g is

let &, n be integers such that< n and letG € Fy**. Similar 4 natural prime congruent tomod 3, and wherek, ¢ satisfy
to a Z-lattice, aZ|w]-lattice can be obtained by Construction

Ac with G = [1] and the corresponding ring homomorphism

A [14]. v3\" v3\"
1) Define the discrete codebodk= {z = Gy : y € F}} ¢ = ( 2 ) _ ( 2 ) Tn+1)
where all operations are ov&y,. Thus,z € FI. Vi (1) o (r‘j{f)zn
2) Generate ther-dimensionalZ|w]-lattice A¢ as A¢ = V3 n om n
{N e Zw]™: a(N) € C}. ~V2nm <—> <—2> , (35)
3) ScaleA¢ with o~! to obtainA = o~ Ac. 2 2exp(1) (r§")

Once again, we would like to note that only the first two steps
that we have stated in Construction A is required to build L
Z|w]-lattice. However,due to the fact that we will prove the
; i i in thi Prmin < TS < 2P mi (36)
existence ofZ|w]-lattices that are good for covering in this min < TA min;



where0 < rp, < i, is good for covering, i.e, in [4]. Some of the important differences are as followsc8in

7 poov we are constructing|w]-lattices, we consider the fundamental

e L, (37)  Voronoi region of the latticeZ[w]" which has a volume of
: . A (‘/75) . Therefore this should be taken into account when
in probability asn — oo.

Proof: We would like to note that the steps we follow¥0! (Va,) is kept constant as — oo. In the detailed proof
in this proof are similar to the proof of Theorem 2 il [5]Provided in AppendiXC, it can be observed that a lattice
The most important differences are as follows. Instead O Picked from the(n, k, ¢, A, Z[w]) ensemble achieves the

considering the lattice points that lie within the fundaraén Poltyrev limit as long as the generator matixof A is full
Voronoi region of the latticeZ”, which is ann-dimensional rank. We would like to note that this result is a generalized

unit cube, we consider the lattice points that lie within thiersion of what was stated inl[4] whelg was assumed to
fundamental Voronoi region of the latticw]”, which is an be an identity matrix. _One of the consequences of picking an
n-dimensional hexagon. Furthermore, since we are conettaiPitrary full rank matrx® would be that’, might stretch out

to ¢ congruent tol mod 3, Bertrand’s postulate is not suffi-IN SOme dimensions yvhlle shrinking in others. Nonetheless,
cient to show the existence of sugthat satisfied(35) anf(36)Since the growth of in Theorem Ip ensures that— oo,

ask grows. Therefore, we use the resultin][23] to show sudfi€re is exactly one element in the kernelcotcontained in

prime numbers exist. For the rest of the proof, see Appdndix 8¢ bounded region, i.e., the left term f (114) vanishes, an
g the result holds.

We would like to note that a variant of Theorém 12 can also ] . .
be proven forg congruent to2 mod 3, which in this case we ~ NOW, we are ready to state the main theorem in the paper.
can construct\ from linear codes oveF . Theorem 15:At relay m, givenh,,, anda,,, a computation

Corollary 13: A lattice A drawn from an(n, k,q,Z[w]) rate of

ensemble, wherk < n but grows faster thalvg® n and where P, P2 -1
k, q satisfy [35) and[{36) is good for quantization, i.e., R(h,,, a,,) = log* <|a % — %) (39)
—m’’ =m =m + )
1 —=-m
A — 38
GA) = 5. (38)

wherega,,,, € Z[w], is achievable.

in probability asn — co. Proof:

~ Proof: It was shown in[[15] that a lattice ensemble which e would like to note that the steps we follow in this proof
is good for covering is necessarily good for quantizatidmu§™ e very similar to the proof of Theorem 5 in [11]. Nonethe-

from Theoreni IR, the result follows. B |ess, there are some important differences we would like to
point out. Sincez,,; are Eisenstein integers in our framework,
C. NestedZ|w]-lattices obtained from Construction-A their real and imaginary components are not independent and

NestedZ|w]-lattices can be obtained from Construction-AV€ cannot use a real and imaginary decomposition as.in [11].
very similar toZ-lattices as mentioned in SectibnTI-B The! herefore, the channel coefficients and channel noise ¢anno
coarse latticeA is obtained through Construction-A as menIEJe dtec?r:pposed Into re?' andd Lmaglnazr)y c?rg_pone_nts either.
tioned in Sectiom_V-B with a corresponding generator matr?ue 0 this, we are constrained to emp M' attices in our
B. For a givenG € F™<*, denoteA’ as the corresponding ramework. Furthermore, in order to obtdip,; from a,,;, we

. ek . . .

Z|w]-lattice obtained through Construction-A usig as the use a ring homomorphisa, which can be thought of as the

generator matrix of the underlying linear code. Generate t quivalent O_f a modulp operation faf,; < Z We would also
Z[w]-lattice A; asA; = BA'. It can be observed that A ike to mention that this proof can be trivially extended e t
with a coding rate of logg. Givenn, k, ¢ and A where C3S€ where information vectors at transmitters have eéiffier

A is a Z[w]-lattice 0bt2§ined from Construction-A, we definelengths by considering a sequence of nested lattice codes. W

the (n, k, ¢, A, Z[w]) ensemble as the set of lattices obtaine%rocefed as follows. i i

from A and Construction-A as previously mentioned where USing the result from Theorem 14, a fifg.]-lattice A

for each of these lattices, the elements of the generatapmafNd @ coarsé&lw]-lattice A, Wh'kCh is nested inA; with a

of the underlying linear cod&; is ii.d with a uniformly Corresponding coding ratg = g, logg, is chosen such that

distribution overF,. Ay achieves the Poltyrev limit and is good for covering.
Theorem 14:There exists a pair of nestedw]-latices B0t A andA; are scaled such thaf; = P. Following this,

where the coarse lattice is good for covering and the finiedatt the lattice codebool _ﬂ ]_/A IS constructed. .
achieves the Poltyrev limit. Source nodé maps its information vectow, € F;, where

Proof: For this proof, we build nested|w]-lattices as ¢ = o and ¢ is an Eisenstein prime, to a lattice codeword

mentioned above. Using our result from TheorEm 12, we € A7 N Va, respectively, via a bijective mapping

p?ck a coarse lattice\ which is good for covering. W(_e thep t, = P(w) = [Bgflafl(Gw)] ’ (40)
pick Ay from the (n, k, g, A, Z[w]) ensemble as described in

Section[V-C and show that the Minkowski-Hlawka theorerwhere o was defined in Sectioh_ViB. It then constructs a
can be proven for this ensemble [4]. We would like to notdither vectord;, which is uniformly distributed withir’, and
that the steps we follow are very similar to the steps folldwesubtracts this dither vector from the lattice codewegrdnd



transmits the following: Nonetheless, this problem can be molded into a different
form which enables the utilization of much more efficient
2 = [ty — )] mod A. (41) algorithms (seel[12] foZ[:] and [13] forZ|w] for example.)
Given a channel coefficient vectay, € CZ, relaym observes In the following subsection, we review this approach for the
sake of completeness.

L
Y= iy + 2, (42)
=1 D. An efficient algorithm for choosing,,

The relay approximates,,, in some sense, by an Eisenstein As can be seen in[([11]), upon scalig% with the MMSE
integer vectom,, € Z[w]” and its goal will be to recover the coefficienta,,, the effective noise variance at relay, which

following: we denote asg; ,,, can be computed as
L
e [Z (amltl)] mod & 43) Ot = loml® + Plomby, —a, |, (47)
=1
: : : : where
It proceeds by removing the dithers and scaling the observat
with «,,, and therefore, Pha,.
QU = ———. (48)
L 1+ A
¥, =amy, + Z apmidy,s (44)  Furthermore, the achievable computation rate at each calay
=1 be expressed in terms ¢f andog,, as
whereq,,, is the MMSE coefficient.
~Theny is quantized to the closest lattice point in the R (b, @) = log* | = . (49)
fine lattice Ay modulo the coarse latticé and estimates the eff,m
following: Therefore,
— : 2
b, = [Q A, @m” mod A, (45) ;‘ri;ﬁ{jﬁ R (B, @) = ;jiéﬁf &t m- (50)

where@,, denotes the quantization with respectAe. The We now take a closer look atg . Substituting [(4B) in
remaining steps of the proof would be identical to the steps (47), it can be observed that

the proof of Theorem 5 iri[11] with the only difference being

~ 2 H H
as follows. The relay maps,, to f via~!, where 0% =Pala — P i
o m = Pndn = T3P,
L
1,4 . -1 1. . H
7 = £, = (7)o (B o ) =Dt~ (1o Lo Ye, e
=1 o

(46)

Due to the Matrix Inversion Lemma [24],
and byt =0 (aml).

Due to the fact thatA is good for covering and the _ %
dithers are uniformly distributed ¥, the probability density 1+ P|k,, |
function of the equivalent noise,, ,,, is upper-bounded by a and o2, can be expressed as
zero-mean complex Gaussian with a variance that approaches .
|t |? + P||mh,,, —a,,||? multiplied by a constant as — co o2 = Pall (I + p@mﬁg) a,,.
(11, Lemma 8]). We would like to note that the error '

probability Pr(z,,, & Va,) goes to zero as — oo, however Note that(7T + Ph, ), which we denote a8, is a Hermi-

this decay is not ngcessanly exponlenualrun_smce we have tian matrix. Therefore, the singular value decompositibi$ o
only proven the existence d@w]-lattices which achieve the ., pe expressed @DV ¥, whereD is a diagonal matrix

Poltyrev limit and this result does not provide informatioqvhich has the eigenvalues Sfas non-zero entries and is an

about the error exponents of such lattices. Nonetheless, ity h,qonal matrix which has the corresponding eigenvector
sufficient to achieve the computation rate [inl(39). of S in its columns. Hence,

Given H and assuming that the relays do not cooperate

= (r+P2) " 62

(53)

with each other, each relay would attempt to pigk < oam = Pall (VD'VH)
Z|w]" that maximizes its individual computation rate, i.e. = P|D2vHg |2 (54)
a,, = argmax R(h,,,a,,) in order to maximizeR (H, A). B

a€Z[w]F ) . and therefore it can be concluded that
A straightforward method to determine the optimg] would
be to employ an exhaustive search overa)l that satisfies argmin ogy,,, = argmin |[D~12V¥g, |2, (55)
lla,, 1> < 1+ ]k, ||2P (L1, Lemma 1]). One major challenge %1 a,, €Ll

in the compute-and-forward paradigm is that for lalgend Thus, the search i _(b5) is equivalent to finding the non-
L, exhaustively searching optimal,, becomes infeasible. zero minimal Euclidean norm point generated By '/2V



as a Z|w|-lattice, which is commonly referred to as thgh; = 1,hs), we plot the region wher®ks(h) > Rp(h),
shortest vector problem (SVP). For reasonable value§,of Rg(h) < Re(h) or Rg(h) = Re(h). For the total number
e.g. L < 32, one of the shortest lattice vectors can be fourmf realizations consideredRr > R¢g, R < Rg. and
via a Pohst enumeration or a Schnorr-Euchner enumeratiBp = Rg for 22.6%, 15.9%, and61.5% of the realizations,

in a way similar to standard sphere decodingl [25][26]. Aespectively. One might expect thafw]-lattices would attain
polynomial-time method to approximafe {55) is based on LLA greater maximum achievable rate whenis closer to an
reduction [27]. For our lattices, an LLL ovef|w] should be Eisenstein integef-lattices would attain a greater maximum
used as devised by Napias for Euclidean rings [28] includiraghievable rate wheh, is closer to a Gaussian integer and
bothZ[i] andZ|w]. Also in [29], LLL has been proposed in aboth lattices would achieve the same maximum achievalge rat
different methodology with no singular value decompositiowhen hs is closer to a natural integer. However as seen from
of S. Finding approximately optimai,, efficiently is an active Fig.[3, other factors also contribute to the maximum achitva

research area. The interested reader is referréd to [30fh@ndrate. For example whefphz || > ||h1]| or ||hz2|| < ||h1]|, the
references therein. relay choosesy; = 0,||az|| = 1 or |lai|| = 1,[laz|| = 0,
respectively since treating the other transmitted sigaalaise

VI. NUMERICAL RESULTS (decode-and-forward) results in maximum achievable rate.

In this section, we present some numerical results on t%so, the MMSE scaling coefiicient plays a very important

achievable computation rates wit{w]-lattices and comparer € as seen int22)[(23) an {44). Note tfafl (56) 4nd (57)
- . - can be written as

them to the maximum achievable rates wihlattices. We

consider the case aof = 2 transmitters and there 8/ =

1 relay. For a given channel coefficient vectorlet R (h)

2
andR¢(h), denote the maximum achievable rate us#igl- Rg(h,P) = max log"t L+ Plh]
lattices andZ-lattices, respectively, i.e., B a€Zw]? lall2 + P (||g|\2|ﬁ|\2 - |QHQ|2)
—1
P|h"al? (58)
Re(h, P) = log™ 2= - , (56
e(h, P) gé%?fP ) <||Q| 1+ P|[h|? (56) and
and L4 Pl
P|th|2 -1 RG(&’ P) = ~m221[?<];2 1Og+ i ||_H H
Ra(h, P) = max log* | (Ja)?— 22 ) | (57 ezl lall? + P (Il - |n"al?)
c(h, P) grenza[f]% 0og <|Q| 1+P|Q||2> (57) &)
respectively.
o Ruh) > Ra(d) As one can see from the denominators[inl (58) dnd (59),

it is desirable to aligna (@) with A as much as possible
in order to minimize the second term. However, wherg
o A E Z[i]%,h € Zw]?, or the elements of cannot be written as the
ratio of Gaussian integers or Eisenstein integersh @ not
a rotated version of a Gaussian integer vector or Eisenstein
integer vector,|a|]| — oo (||lal| — oo) for perfect alignment.
Unfortunately, this results in the first term of the denontdna
to grow and hence there is a tradeoff. Therefore even though
ho might be closer to an Eisenstein integer (Gaussian integer)
i.e. b is aligned better with a vector i[i]? (Z[w]?), the
magnitude of this vector might be too large and thus a larger
................................... computation rate may be achieved by choosings Z[i]?
(@e Z[w]).

In Fig. [4, we fix the channel realization to be
h = [1.4193 4+ ;j0.2916;0.1978 + j1.5877] and compare
Rg(h, P), Ra(h, P) for different SNRs. For this particuldr,
it can be observed th#i|w]-lattices can achieve substantially
higher rates tharZ-lattices in the medium SNR regime. We
would like to note that this is not necessarily the case fergv

Rg(h) < Rg(h)

A Rp(h) = Ra(h)

Im(h,)

1

0
Re(h,)

Fig. 3.  Regions ofR (h2),S (h2) where Rg(h,P) > Rg(h, P),

Re(h, P) < Re(h, P) of Res(h, P) = Ri(h, P); SNR=10 dB channel realization, nonetheless it is a perfect exampleof
- - - - channel realizations affect the performanc&ff]-lattices and
In Fig. [3, we fix hy = 1 and chooseh, such that Z-lattices. Therefore, a larger number of channel reabizati

R(h2),S(h2) € [—4,4]. We would also like to note that we should be considered in order to make a fair comparison of
do not impose a probability distribution drp. For each pair their performance in the average sense.
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Fig. 4. A comparison ofRy(h, P) and R (h, P) for h = [1.4193 + Fig. 5. Outage Probability df[w] Lattices vsZ Lattices

§0.2916;0.1978 + 51.5877]

distributed edge weight, length 10000 LDPC code o¥ey
A. Outage performance comparison Gflattices vs.Z[w]- and mapped each codeword component to the constellation
lattices in compute-and-forward carved fromZ[w]/5Z]w] via a ring homomorphism. In order

In this subsection, we compare the outage performance [-construct a lattice code over natural integers, we have
tice codes ove. and lattice codes ovét[w] for compute-and- used a rate 1/2, regular (3,6), uniformly distributed edge
forward. Given a target rat&; and a probability distribution Weight, length 10000 LDPC code ovEs and mapped each
P onh, i.e. h ~ P, we define the outage event of usidlg Ccodeword component to the coset leaders of the quotient ring
lattices andZ[w]-lattices asR¢(h) < Ry andRp(h) < Ry, 4/5Z, i.e. {-2,-1,0,1,2}. Note that for the lattice code
respectively. In Fig[J5, we plot the outage probability wittpver natural integers, we consid&k due to the real and
Z|w]-lattices andZ-lattices as a function of SNRP) where imaginary decomposition. We have generated 100000 channel
R (h1),3(h1),R(ha), S (he) ~ N(0,1). We average over realizations, used these channel realizations over a rafige
100000 realizations of at each SNR and choose the targe?NR, and we have plotted the average symbol error probabilit
rate to beRy = 1/2log, 7 bits/symbol/Hz. As seen in Fig. of these lattice codes for the compute-and-forward frankewo
[, there is a 0.4 dB gain from usirigjw]-lattices instead of ASseenin Fid.J6 simulation results show that lattice codes o
Z-lattices in terms of outage performance. We would like t6isenstein integers outperform lattice codes over integgr
note that this gain comes with no additional computationéPughly 0.4 dB, which is consistent with our outage simolati
complexity. results.

B. Error correcting capability ofZ-lattices vs.Z|w]-lattices
in compute-and-forward

In this subsection, we compare the error-correcting capa-In this paper, we have shown the existence of lattices over
bility of lattice codes ove#Z and lattice codes ovef|w] for Eisenstein integers that are simultaneously good for dgent
compute-and-forward. Before we do that, we would like tbon and that achieve the Poltyrev limit. These latticesewver
point out that in general, the nested lattice shaping adoptdien used to generate lattice codes over Eisenstein isteger
in the previous sections is very difficult to be implementedvhich were implemented for compute-and-forward and thus
In fact, it is equivalent to the SVP and hence is NP-hardnable the relays to decode to linear combinations of &attic
In practice, one could trade performance for complexity byoints with Eisenstein integer coefficients instead of Gaus
considering the use of hypercube shaping. Then the proposgegers. Due to the fact that Eisenstein integers quantize
scheme would reduce to the concatenation of a linear code ogkannel coefficients better than Gaussian integers, one can
F, with a constellation corresponding to a set of minimuraxpect an increased achievable computation rate on average
energy coset leaders of the quotient rifff]/oZ[w] (or Simulation results suggest that for compute-and-forwiatd,
Z/qZ). In the following, we compare the error-correctindice codes over Eisenstein integers provide improved @utag
capability for this practical scheme. performance and error-correcting performance in the aeera

In order to construct a lattice code over Eisenstein isense compared to lattice codes over integers without thie co
tegers, we have used a rate 1/2, regular (3,6), uniformdy additional computational complexity.

VII. CONCLUSION
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Vol(-): Volume of a closed set irC", or equivalently
volume of a closed set iR?".

GRID*: GRIDN V.

B(r):A complexn-dimensional, or equivalently re&h-
dimensional, closed set of points inside a sphere of radius
r centered at the origin.

A*: The lattice constellation, i.eA* = A N')V. Note that

A* can generatd as follows:
A= A"+ Z[w]". (61)

M = |A*|: Cardinality of the lattice constellation.
Af: Apointin A*, i€ {0,---,M —1}.

18 19
SNR (dB)

s Note that by our construction, the lattices chosen from the

(n, k, q, Z]w])-lattice ensemble are periodic modulo the region
V. Thus we can restate all the properties of our lattice in
terms of the lattice constellation* that lies withinV. The

(n, k, q, Z|w])-lattice ensemble has the following properties:

Fig. 6. Symbol error rate df[w] Lattices vsZ Lattices

APPENDIX

In this section, we provide the proofs for TheorEm 12 and
Theoren{I#. We would like to note that the proof techniques
used in proving Theorem 112 are very similar to those used
in [5] and our proof of Theorermh 14 is largely based on the
proof in [4]. However, there are a few steps that have to be

1) Aj = 0 deterministically.
Proof: 0 is always a valid lattice point due to the
definition of a lattice and* = 0. Thus the result holds.
]
2) A7 is distributed uniformly over GRID for i €
{1,---,M — 1} where M = ¢*.
Proof: Each element o is chosen uniformly over
F,, therefore each codeword of the underlying linear
code is distributed uniformly ovef;. Due to last step

in Construction A in Sectioh VB where the lattice is

re-derived since Eisenstein integers are considered. é&ept

the entire proof for the purpose of completeness. We firs giv

some definitions and preliminaries that will be very useéul f
the proofs.

A. Notations and Definitions fdE|w]-lattices

In [14, p. 54], it is stated that an-dimensional complex
lattice can be equivalently thought of ag=adimensional real
lattice by the following mapping

D) - AT = [RAD) A1) - R(An)) S(A(n)]"

(60)

where the left hand side is andimensional complex lattice
point and the right hand side is it3:-dimensional real rep-
resentation. Thus we shall considerdimensional Eisentein
lattices as2n-dimensional real lattices and ug€g* and R?"

interchangeably. We shall now introduce the notation thilt w

be used in this section.

o S0 S\ 0, whereS is any discrete set.

« V: Fundamental Voronoi region of the latti@w]”.

o GRID: The latticep~'Z[w|", where o is an Eisenstein
prime.

o ¥ =zxmodV =z mod Z[w]" =z — Qg (z) Where
zeC",

e A* = Amod V, whereA is any set inC" and themod
V operation is done element-wise.

o A2 A\ {0} whereACR", ACC" or ACF?

o A: An n-dimensionalZ|w|-lattice nested in GRID, i.e.,
ACGRID.

scaled withp~! and the ring homomorphisr, the
result holds. ]
The differencg A} — A})* is uniformly distributed over
GRID* for all 7 # j.

Proof: This result holds due to the previous prop-

3)

erty and the definition of the operation. ]
4) |A*| = ¢* with high probability if n — k — oo
Proof:
k
Pr{rankG) < k} < ) Pr{ZciGi = Q}
c#0 i=1
=q¢ "(¢" - 1), (62)
wherec; would be elements of &Ax 1 coefficient vector
C. |

B(r) mod V as aV-ball. Under

We shall refer toB(r)*
< 1, we say that(A* + B(r))* is a

the assumption that
V-covering if

1
27

ve |J A+Be). (63)
AEA*

Note thatA + B(r) is a covering if and only if A* + B(r))"is
a V-covering

In our lattice ensemble, we will constrain< gn for some
0 < B < 1. Therefore PfrankG) # k} goes to zero at
least exponentially. IG is full rank, there aré\/ = ¢* many
codewords that lie iv. ALso, ann-dimensionalV is known
to have a volume 0(@) . Then the volume of the Voronoi
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n
region of our lattice is equal tg\/?g ¢ *. In our analysis columns of G by A*[k;] and letA*[k; + 7], = 1,--- , ko
very similar to [5], we will hold the effective radius of thedenote the Eisenstein lattice constellation obtained fthen
Voronoi region ofA, denoted as$™ approximately constant first k1 + j columns ofG. Let z be an arbitrary point such

asn — oo. This implies the following: thatz € V. Let S1(z) denote the set of GRID points within
n n a modulo distance — d from 2 whered was defined in[{88).
(¥) _(¥) Ty : :
¢ = T (M — e Si1(z) =GRID* N (z + B(r —d))". (69)
BT n €
A i ,(LTA ) Furthermore, denot8,(z) to be the set of GRID points such
— o V3 (g)" 140 1 (64) that their Voronoi regions intersect a sphere of radius2d
9 (Tiﬁ)Q e n)) centered at.
Note thatg can either be a natural prime congruenttmod 3 Sz(z) = {y € GRID* : (y+ o~ 'V) N (z + B(r — 2d))"} .
or the square of a natural prime congruent Zanod 3, (70)

nonetheless we shall restrigto be a natural prime congruent o
to 1 mod 3 for the sake of simplicity. We would like to notelt can be observed thal;(z) C Si(z). Thus, the cardinality
that it is not possible to keeg constant as grows since;  Of S1(z) can be bounded as:

has to_be a natural prime cong_ruentlt(mo_d 3 ano!l_c has to 181(2)] = [Sa(z)] > [Vg(r _ 2d)/VO|(g_1Vﬂ

be an integer. Therefore, we will relax this condition to

= [a"(V3/2)"Vi(r - 24) | (71)

By the second property of the ensemble, the probability that
is covered by a sphere of radigs— d) centered at any point
of A*[k] satisfies

ff
Tmin < Ti < 2Tmin7 (65)

asn grows, where) < r,,;, < i. Although we have restricted
g to be a natural prime congruent tbmod 3 , with the

assumption ofk < An for 8 < 1, (€9) can be satisfied
for any large enough due to the following. Letg* be the  Pr{z € (Aj[ki] + B(r —d))*} =

re:;;tl numberlthat satisfie _{64) for a rad|u52_@fnm. Then, 1S1(2)|/q" > (\/5/2)7"‘/3(7" —2d),
¢* = ——=—— and from [6b),¢ must satisfy
Vis(\/Z27min) (72)
¢ < q<22/kgr (66) fori=1,---,M;—1whereM; = ¢** andA; is theith point
of A*. The indicator random variablg fori =1,--- | M;—1

Finally, to show that for eacm > 4 in our sequence a g defined as

corresponding exists that satisfie§ (66), we use the following _ i

lemma. = ni(z) {L if z € (Aj[k] + B(r — d))
Lemma 16 ([2B]): There always exists a natural prime con- ~ 10, otherwise

gruent tol mod 3 between integers: and2m wherem > 4.

; Note thati = 0 is not considered sinc&j[k;] = 0 determin-
We would also like to note that fronh (64), the growthf .~ ) o , 0lvL
is O(n%) Thus ) g © istically. Thus,n; is statistically independent of bothand .

Define X = X(z) as follows:
lim n/q=0. (67) M1

n—oo
X=> n (73)
B. Proof: Existence df[w]-lattices that are good for covering i=1

The proof of this theorem is divided into two parts. In th&lence. ' is equal to the number of nonzero codewolds d)-
first part, sufficient conditions are obtained such that mog@veringz. Computing the expectation ot and using the
Eisenstein lattices in the ensemble are “almost complete” lower bound from[(72),

coverings. In the second part, stricter conditions are sego M;—1
such that most of the Eisentein lattices in the ensemble are EXx) = Z E(n:)
complete V-coverings and thugomplete coverings . i=1
Part I: AlImost complete covering > (M, —1) (ﬁ/g)—nVB(r — 2d). (74)

Denoted to be half of the largest distance between an?_inc_:e ther;'i’s are pairwise independent and thus uncorrelated,
two points that lie within the Voronoi region of an element igimilar to [3] one has

GRID. Var(X) < E(X). (75)
d= 3%. (68) Using [75), by Chebyshev’s inequality, for amy> 0
Note that by [E6)d — 0 asn — oc. Pr{|X —E(X)| >2 E(X)} < \Q/UL(X) <27, (76)
Consider the lattice constellatioh* of the ensemble and 22 E(X)

define k1, ko such thatk; + k; = k. We shall denote the Define
Eisenstein lattice constellation obtained from the fikst p(v) = BE(X) — 2Y\/E(X). (77)
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Then from [76), wherec is the ring isomorphism defined in section V-B. Also

PHX < u(v)} < 2%, (7g) Mot that
q—1
If u(v) > 1, P{X < 1} is upper-bounded bg~—2" as well. Ak +1] = U (A*[k1] + 07 ([m - (Gpy41)] mod q)) .
A point z € V will be referred agemotefrom a discrete m=0

set of pointsA if it is not » — d-covered by(A + B(r — d))”, (87
i.e. if z does not belong to afr — d)- sphere centered at anyHence,S C A*[k; + 1] andg, is upper-bounded b)(%-
point of A. Therefore,X'(z) < 1 implies that % is remote SinceA*[k1]+ {o~*(Gy,+1) NV} is an independent shift of
from A*[k;]". Define Q(A) to be the set of (continuous)A*[k:], conditioned om\*[k; ], the event that is remote from
points which are remote from the discrete sét Denote A*[k1] + {cr*l(GkIH) ﬁV} is independent from whether

Q;=Q(A*[k1 +1]),i=0,1,--- , ko and define is remote fromA*[k;] and the probability of such an event is
qo- Then,
4 = Qil Vol (). (79 19(9)| )
. : e E 7|90 ¢ = 45 (88)
to be the fraction of (continuous) points¥hwhich are remote |GRID|

from A*[k1 +1]. Then, Due to the fact thaf C A*[k; + 1], we haveE {q1|q0} < ¢3.

Q0| = / 1(X(z) < 1) da (80) By Markov's inequality,
; Pr{Ql > 27E(Q1Iqo)’qO}- (89)
< [ 1@ < n) e 61)
% Therefore,
under the condition that(v) > 1. Then, from [[7B) we have Pr{ql < 22|y < 27,/} >1_97 (90)
B(q) <272, (82)

From Bayes’ rule and (84),

Applying Markov's inequality we get
Pr{fh < 2772”} > Pr{‘h <277 o < 27”} (91)

Pr{go > 2"E(q0)} < 27". (83) X o

> (1—-27 1-27%).
Using [82), > ( ) ( ) (92)
Pr{igo > 27"} <27". (84) Repeating this procedure for=0,1,..., ks — 1, we obtain
Therefore, by takingy — oo and keepingu(v) > 1, this qir1 < 2YE(q1lq) (93)
probability can be made arbitrarily small as— oc. In order < 27 (94)

to satisfy these constraints it is sufficient to take- o(log n)
and E(X) > n* for some\ > 0. By (74) this would be with probability at least —277. Hence, the intersection of all
satisfied if we choose a radiussuch that theseks events and the event that < 27" has the probability

. n (1—27v)(1—2-" which implies
Va(r —2d) (v3r) - (85)

Hence, we conclude that for these choice of parameters, {% would like to choosé: such that
most lattices chosen from the, k, ¢, Z|w]) ensemblealmost 2
all points are covered by spheres of radius d. Qr, < q " =27 "loeq (96)

qkl —-1= ko
Qhy < 9272 (y=v)— (95)

Part Il: Complete covering The interpretation of (96) ig;, = 0 since there arg” points
in GRID*. Therefore, choosing = v — 1 and

We would like to obtain an ensemble &fw]-lattices such
that most of its members are able to cover all the points in
V. Q(A) is redefined to be the set of GRIpoints, i.e..z € or faster suffices. Due to the fact that= &, + k2, we conclude
GRID* which are remote from4 and g; is redefined to be that with probability at least
the fraction of GRID point_s that are remote f_romf[kl +z] |91 (1 w1y togntiogloza) 08
Therefore, anr — d)-covering of all GRID points implies an ( - ) ( - ) (98)

r-covering of all points in. , - A*[k] satisfiesqr, < ¢~™, in other words every: € GRID*
By augmenting the generator mau@ with an additional s covered by at least one sphere of radius- d). We would
small number of column#,(k, < k1), the fraction of un- e tg impose a condition on such that both — oo and the

covered GRID points can be made smaller thaj| GRID"|  5rnapility in [98) goes to 1 as — co. It suffices to choose
which implies that all GRID points are — d-covered. We

proceed as follows. v = 2log (logn + loglogq) . (99)

2
(IBZC;h;r?jE%B? g(r?leq ;:t?;iézaﬂge?i:‘oewiga:ir thaiog™ n and Note that asu(v) > 1, the probability that there remains a
' pointz € GRID* that is not(r—d)-covered is arbitrarily small
S = Ak U (A k1] + {07 (Gry41) NV}, (86) asn — oo. If every point of GRID is (r — d)-covered, then

ko = [logn + loglog q], (97)
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V is r-covered. Thus, the probability of a complete coveringAc with the generator matriB and obtain the latticé ; =
with spheres of radius goes to 1 where satisfies(sed (85)) YBAc. It can be observed thatoZ[w]|" C voA C Ay and
there areg® elements ofA; that lie within the fundamental

M =gkt = V72d (\/_/2) ¢ (100) Voronoi region ofypA. Hence, the volume of the fundamental
(r —2d) region of Ay is
(log n+loglog q)+1
_V(r—2d)(\/_/2) 1 /)"
(101) Vol (Va,) =+*"q" " <7> Vol (V) - (108)
A
_ 3/9 2logq [(log n+log logq)+1]
Vs(r — 2d) (\/—/ ) ) ) ]
(102) We can now extend the Minkowski-Hlawka Theoremlin [4] to
Eisenstein lattices as follows, following similar steps.
From [10D) and[(102). Theorem 19:(Minkowski-Hlawka Theorem:Let f be a
r ) Vi (r) ok Riemann integrable functio®?” — R of bounded sup-
iff = Va(r — 2d) q- (103) port(i.e., f(v) = 0 (if ||v| exceeds some bound). Then for

any integerk where0 < k < n, and any fixed VdV,, ), the
< ( T2d) -n)‘/Qn . 2(logqlogn+logqlog log g+log q)/277,' approximation
r_

(104)

~ —1
For peov — 1, the left-hand side of {103) should go to 1. C cz:c ZBA/ f(v) = Nol(Va,) /Rzn f(v)dv,  (109)
Hence, we require each of the three terms on the right-hand << "€9("BAe)
side of [10%) goes to 1. Frori (67) arid](68), it follows that

d — 0 asn — oo provided that: < n andg < 1. Therefore, whereC is any balanced set of linedrn, k) codes overlfF,
- and whereg(-) : C* — R?" as in [60), becomes exact in the

lim < r2d> —1. (105) limit ¢ — oo, v — 0, y2"g"~* (@) Vol (V) = Vol (Vy,)
nTeeAT T fixed. Note that these conditions imply thas — oc.
For any fixed\ > 0, we havelim,,_, n*/?" = 1. Also, since Proof:

k grows faster thaivg? n, by (64) we havéog p grows slower
thanolog(n/logn). Then,

||Z S fw) (110)

nlinolo 2(logqlogn+logqloglog q+logq)/2n _ 1. (106) CeC vegvBAL)
1
Thus, we have thaf—fr — 1 in probability asn — oo which = m Z [ Z f(yBu)...
completes the proof\ CeC wveg((Zw]™)'):6(v)=0
+ 3 f(va)} (111)
C. Proof: Existence of good nesté&dw]-lattices vEG(Z[w]™):5(v)EC”
Using our result from Theorem 112, leA be an n- = Z f(vBo)
dimensional Z[w]-lattice obtained through Construction-A ve(g(Z[w]™)"):5(v)=0

with a corresponding generator matdX which is good for
covering L
o . . PP
Definition 17: A setC of linear (n, k) linear code ovef™” Cl &t 2 vCa(Zl T3 (o=
is balancedif every nonzero element @” is contained in the

f(yBo) (112)

q
same number, denoted by, of codes fromC. = Z f(vBv)
Note that for fixedn, k, andq, the set of all linear(n, k) veg((Z[w])"):6(v)=0
codes ovetF, is balanced. We shall now state Lemma 1 in ¢ —1
[]. + o > f(yBv) (113)
Lemma 18:Let f(-) be an arbitrary mapping; — R and 1 ce(EnY | veg(Zw]m):&(v)=c
letC be a balanced set of line@t, k) codes ovelf,. Then, the _
- : a = f(vBv)
average over all linear codés in C of the sum)___., f(c) ‘-
is given by veg((Z[w]™)"):6(v)=0
Lt 3 F(vBv) (114)
— n—1 ’
Z > e Z fv (107) T 7 " veqtirmia o

CEC cec! ve(w)

For proving Theorerir 14, we shall use nes&d]-lattices
obtained from Construction-A as mentioned in Sedfion] V-C. where the step fronf_(112) t6_(1113) is due to Lemiméa 18 and
scaled version o\ denoted as/A¢, wherey € Rt andAc  due to the fact thayf has bounded support, the left term of
was defined in sectidn VIB is constructed. Then, we multipiffI4) vanishes for sufficiently largeg and the right term of



(I13) becomes
" —1 Z

T
4 veg((Zfw]my)

v <%) ’ Vol(Vy) ™!

which becomes exact in the limit as— 0, y¢ — oo, i.e, a
Riemann sum approaching to a Riemann integral. Note that ttd
n

termy~—2ngk—" () appears in front of the integral iR (115) [5]
since it is the reciprocal of the volume of the fundamental
Voronoi region ofAy = yBAc. B g
Suppose now that a transmitter selects a codewofrdm
an Eisenstein lattic € C™ (or equivalentlyR?*") and z is (7]
transmitted over an AWGN channel where a random nois,
vector z € C"(or equivalentlyR?") gets added with the
variance of eacl2n components equal t&,/2. The receiver
obtainsy = x + z and tries to recoveg. Furthermore, let
E C R?" be a set of typical noise vectors. We say that an
ambiguity occurs ify can be written in more than one wayl0l
asy =z +e wherez € A ande € E. Let Pyny be the (1
probability of ambiguity given that € E. Assuming that the
receiver is able to recover whenever: € E and there is no
ambiguity, the probability of decoding error is upper-bdad [12]

by

(1]

f(vBv) ~

[2]
f(v)dv,

R2n

(115)
[3]

[13]

PegpamuE+P(£¢E)' (116)

Due to the fact that Minkowski-Hlawka theorem can be provéi"n“]
for Ay, the following theorem immediately followsl[4] [15]

Theorem 20:Let E' be a Jordan measurable bounded subset
of R2" and letk be an integer such that< k < n. Then, for [16]
any ¢ > 0, for all sufficiently largeg, and for all sufficiently ;7
smallv, the arithmetic average @,y z over all lattices\ y =
vBAc, C € C, which we denote a®,my g, is bounded by

(18]

Pame < (14 6)Vol(E)/Vol (Vy,) (117) g

where C is any balanced set of lineam, k) codes over
F, and where Vo(Vx,) £ 7*"¢"~*Vol(Va) (@ is the
fundamental volume of the lattices; = yBA¢, C' € C.

Note that asn — oo, E will approach the shell of 2n-
dimensional ball with radius, = /nP,. Thus

[20]
[21]

[22]

n [23]
= _ V)
< [ /A
VoI(E) < Vol(B(y/nFP;)) T 1) as n — oo, [24]
(118) [25]
which immediately follows that (26]
2n

_ T, [27]

Pame < (1+90) | —7— , (119)

TyBAc [28]

asn — oo. This implies thatPaynyp — 0 asn — oo for  [29]
ry < rgfgc. Hence for a given latticd ; = YBAc, Pampr —
0 in probability asn — oco. Taking into account thaP(z ¢
E) — 0 asn — oo, from (I16) we conclude tha?, — 0 in

probability asn — oo. This completes the proof.

(30]
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