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Abstract—In this paper, we consider the use of lattice
codes over Eisenstein integers for implementing a compute-
and-forward protocol in wireless networks when channel state
information is not available at the transmitter. We extend
the compute-and-forward paradigm of Nazer and Gastpar to
decoding Eisenstein integer combinations of transmitted messages
at relays by proving the existence of a sequence of pairs of
nested lattices over Eisenstein integers in which the coarse
lattice is good for covering and the fine lattice can achieve the
Poltyrev limit. Using this result, we show that both the outage
performance and error-correcting performance of nested lattice
codebooks over Eisenstein integers surpasses lattice codebooks
over integers considered by Nazer and Gastpar with no additional
computational complexity.

Index Terms—Compute-and-Forward, Lattice codes, Eisen-
stein integers

I. I NTRODUCTION

Compute-and-forward is a novel relaying paradigm in wire-
less communications in which relays in a network directly
compute or decode functions of signals transmitted from
multiple transmitters and forward them to a central destination.
One of the most effective ways to implement a compute-and-
forward scheme is to employ lattice codes at each transmitter.
Since a lattice is closed under integer addition, lattice codes
are naturally suited to decoding integer linear combinations of
transmitted signals.

Lattice codes have been shown to be optimal for several
problems in communications including coding for the point-
to-point additive white Gaussian noise (AWGN) channel [1]
and coding with side information problems such as the dirty
paper coding problem and Wyner-Ziv problem [2]. The con-
struction of optimal lattice codes for these problems requires
a lattice that is good for channel coding. Since a lattice has
unconstrained power, goodness for channel coding is measured
using Poltyrev’s idea of the unconstrained AWGN channel. In
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[3], Poltyrev derives the maximum noise variance that a lattice
can tolerate while maintaining reliable communication over
the unconstrained point-to-point AWGN channel, which is
referred to as the Poltyrev limit in literature. Loeliger showed
the existence of lattices that achieve the Poltyrev limit by
means of Construction A in [4]. Then, Erezet al., showed
that there exists lattices which are simultaneously good for
quantization and can achieve the Poltyrev limit in [5] which
made it possible to construct nested lattice codes that were
able to achieve a rate of12 log (1 + SNR) over the point-
to-point AWGN channel. There has also been great interest
in constructing lattice codes with reasonable encoding and
decoding complexities such as Signal Codes and Low Density
Lattice Codes [6], [7].

In a bidirectional relay network when channel state infor-
mation is available at the transmitters, the transmitters can
compensate for the channel gains and the relay can decode
to the sum of the transmitted signals, which is a special
case of compute-and-forward. For this system model, it was
shown that an exchange rate of12 log

(

1
2 + SNR

)

can be
achieved using nested lattice codes at the transmitters, which is
optimal for asymptotically large signal-to-noise ratios and pro-
vides substantial gains over other relaying paradigms suchas
amplify-and-forward and decode-and-forward [8], [9]. In [10],
a novel compute-and-forward implementation is proposed for
theK ×K AWGN interference network where channel state
information is available at the transmitters, which achieves the
full K degrees of freedom.

We consider the case when channel state information is not
available at the transmitters. In this case, an effective way
to implement a compute-and-forward scheme is to allow the
relay to adaptively choose the integer coefficients depending
on the channel coefficients. Nazer and Gastpar have introduced
and analyzed such a scheme which uses lattices over integers
and they have derived achievable information rates in [11].
In [12], Feng, Silva and Kschischang have introduced an
algebraic framework for designing lattice codes for compute-
and-forward. The framework in [12] is quite general in the
sense that every lattice partition based compute-and-forward
scheme can be put into this framework, including the one by
Nazer and Gastpar in [11]. However, [12] does not provide a
means to identify good lattice partition based schemes.

In this paper, we contribute to the literature by identifying a
lattice partition based compute-and-forward scheme whichis
particularly good for approximating channel coefficients from
the complex field. Our scheme can be regarded as an extension
of the scheme in [11] to lattices over Eisenstein integers. We
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show that an improvement in outage performance and error-
correcting performance can be obtained compared to using
lattices over integers. We proceed by proving the existence
of a sequence of nested lattices over Eisenstein integers in
which the coarse lattice is good for covering and the fine
lattice achieves the Poltyrev limit. Using this result, we can
show similar results to those in [11] with integers replaced
by Eisenstein integers. The main improvement in outage and
error-correcting performance is a consequence of that the use
of lattices over Eisenstein integers permits the relay to decode
to a linear combination of the transmitted signals where the
coefficients are Eisenstein integers, which quantize channel
coefficients better than Gaussian integers.

Recently, we became aware of an independent work by
Sun et. al. [13] where lattice network codes over Eisenstein
integers are also considered. The main focus in [13] is the
analysis of the decoding error probability, which suggests
that lattice network codes built over Eisenstein integers can
provide significant coding gains over lattice network codes
built over Gaussian integers. Our work differs from [13]
in the following ways. While their focus is on constructing
finite constellations from lattice partitions which are suitable
for compute-and-forward, we consider construction of lattices
(infinite constellations) over Eisenstein integers and show
the optimality of such construction. Moreover, their coding
scheme can be regarded as the concatenation of a linear code
over an appropriate finite field and a constellation carved from
a lattice partition. On the other hand, our scheme is a more
general one which is formed by the quotient group of a lattice
over Eisenstein integers and its sublattice. It can be shownthat
the scheme in [13] is a special case of ours with hypercube
shaping1. This generalization is imperative in the sense that
it allows us to show the achievable computation rates if one
would use such lattices for compute-and-forward.

The structure of our paper is as follows. In Section I-A,
we introduce the notation that will be used throughout the
paper. In Section II, we present the system model that will be
considered. In Section III, we provide some background on
lattices and lattice codes. In Section IV, we discuss Nazer
and Gastpar’s framework for compute-and-forward [11]. In
Section V, we discuss how lattices over Eisenstein integers
can be used for compute-and-forward in Nazer and Gastpar’s
framework and what properties of these lattices are required
in order to achieve computation rates formulated similarlyto
those in [11]. In Section VI, we provide numerical results
and compare the outage performance and error-correcting
performance of lattices over natural integers and latticesover
Eisenstein integers in compute-and-forward. In Appendix A,
we introduce the notation that is used in Appendix B and
Appendix C, we prove that there exist a nested pair of
Eisenstein lattices which the coarse lattice is good for covering
and the fine lattice achieves the Poltyrev limit.

1Here, we use the term “hypercube shaping” to denote a scheme using
a properly scaled version of Eisenstein integers as shaping(coarse) lattice.
Thus, whenZ or Z[i] are considered, the shape is a hypercube. However, it
is in fact not a hypercube ifZ[ω] is considered.

A. Notational Convention

Throughout the paper, we useR to denote the field of real
numbers,C to denote the field of complex numbers, andFq

to denote a finite field of sizeq. Z, Z[i], andZ[ω] are used to
denote the set of integers, Gaussian integers, and Eisenstein
integers, respectively. We use underlined variables to denote
vectors and boldface uppercase variables to denote matrices,
e.g.,x andX, respectively. We denote theith column of a
matrix X as Xi. Also, we use superscriptH to denote the
Hermitian operation, e.g.,xH andXH . We definelog+(x) ,
max(log2(x), 0) and denote the Euclidean metric as‖ · ‖. We
denote the all zero vector inRn as 0 and then × n identity
matrix asI. We denote the volume of a bounded regionE ⊂
Rn as Vol(E) and denote then-dimensional sphere of radius
r centered at0 asB(r) , {s : ‖s‖ ≤ r}.

II. SYSTEM MODEL

We consider an AWGN network as shown in Fig. 1 where
L source nodesS1, S2, . . . , SL wish to transmit information
to M relay nodesD1, D2, . . . , DM , whereM ≥ L. It is
assumed that relay nodes cannot collaborate with each other
and are noiselessly connected to a final destination interested
in the individual messages sent from all the source nodes.
The objective of the relay nodes is to facilitate communication
between the source nodes and the final destination.
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Fig. 1. The AWGN Network whereS1, S2, . . . , SL wish to transmit
information toD1,D2, . . . ,DM . The channel between theSl and Dm is
denoted ashml.

We denote the information vector at the source nodeSl

aswl ∈ Fk
q . Without loss of generality, we assume that the

length of the information vector at each transmitterl has the
same lengthk. Each transmitter is equipped with an encoder
El : Fk

q → Cn that mapswl to an n-dimensional complex
codewordxl = El (wl). Each codeword is subject to the power
constraint

E||xl||2 ≤ nP. (1)

The message rateR of each transmitter is the length of its
message in bits normalized by the number of channel uses,

R =
k

n
log q. (2)



3

Due to the superposition nature of the wireless medium, each
relaym observes

y
m

=

L
∑

l=1

hmlxl + zm, (3)

wherehml ∈ C is the channel coefficient betweenDm and
Sl. As it can be observed from (3), it is assumed that there
is no inter-symbol interference and allhmlxl arrive at the
relay simultaneously. Furthermore,zm is an n-dimensional
complex vector which consists of identically distributed (i.i.d.)
circularly symmetric Gaussian random variables, i.e.zm ∼
CN (0, I). Let hm = [hm1, · · · , hmL]

T denote the vector of
channel coefficients to relaym from all the source nodes. We
assume that the relaym only has the knowledge of the channel
coefficient from each transmitter to itself, i.e.,hm.

Each relay attempts to recover the linear combinationf
m

(overFq)

f
m

=

L
⊕

l=1

(bmlwl) , (4)

wherebml ∈ Fq and letbm = [bm1, . . . , bmL]
T . Typically bmls

are chosen based on the network structure and/or the channel
coefficients. It is desirable for the matrix[b1, . . . , bM ] to be
full-rank which enables eachwl to be recovered at the final
destination. For eachDm, we define the decoderGm : Cn →
Fk
q and f̂

m
= Gm(ym) is an estimate off

m
. Let P denote a

principal ideal domain inC such asZ[i] or Z[ω].
Definition 1 (Average probability of error):Equations

with coefficient vectorsa1, a2, . . . aM , where eacham ∈ PL,
are decoded withaverage probability of errorǫ if

Pr

(

M
⋃

m=1

{

f̂
m

6= f
m

}

)

< ǫ. (5)

Definition 2 (Computation rate of relaym): For a given
channel coefficient vectorhm and equation coefficient vector
am ∈ PL, the computation rateR (hm, am) is achievable
at relay m if for any ǫ > 0 and n large enough, there
exist encodersE1, . . . , EL and there exists a decoderGm such
that relaym can recover its desired equation with average
probability of errorǫ as long as the underlying message rate
R satisfies

R < R (hm, am) . (6)

Due to the fact that the relays cannot collaborate, each relay
picks an integer vectoram such thatR (hm, am) is maximized.

Definition 3 (Computation rate of AWGN network):Given
H = [h1, . . . , hM ] and A = [a1, . . . , aM ], the achievable
computation rate of an AWGN network is defined as

R (H,A) = min
m:aml 6=0

R (hm, am) , (7)

provided that the matrixσ (A) = [b1, . . . , bM ] ∈ FL×M
q ,

whereσ : PL×M → FL×M
q , is full rank. If [b1, . . . , bM ] is

not full rank,R (H,A) = 0.
Note that in this paper, our coding scheme particularly consid-
ers the ring of Eisenstein integers, i.e.,P = Z[ω]. The reason
will become clear in the following sections.

III. B ACKGROUND ON LATTICES

Due to the fact that the coding scheme that will be
considered heavily relies on lattices, we now provide some
background knowledge on lattices. For more details on lattices,
please refer to [14], [5], and [1].

Definition 4 (Lattice overZ): An n-dimensional lattice
over natural integers, Λ(n), is a discrete set of points inRn

such thatΛ(n) is a discrete additive subgroup ofRn with
rank k wherek ≤ n. Such a lattice can be generated via a
full rank generator matrixB ∈ Rn×k

Λ(n) =
{

λ = Be : e ∈ Z
k
}

. (8)

For notational convenience, we shall drop the superscript in
Λ(n) in this paper and denoten-dimensional lattices asΛ.
Also, we refer to lattices over integers asZ-lattices throughout
the paper.

Given a latticeΛ, we denote thequantizeroperation with
respect toΛ asQΛ, the modulusoperation with respect toΛ
as mod Λ, and thefundamental Voronoi regionof Λ asVΛ.
We denote thecovering radiusand effective radiusof Λ as
rcov
Λ andreff

Λ , respectively. We denote thesecond momentand
normalized second momentof Λ asσ2

Λ andG (Λ), respectively.
We refer the reader to [14] for these definitions.

Definition 5 (Goodness for covering):A sequence of lat-
ticesΛ is good for coveringif

lim
n→∞

rcov
Λ

reff
Λ

= 1. (9)

These lattices are also commonly referred to asRogers good,
since it was first shown by Rogers that such lattices exist [15].

Definition 6 (Goodness for quantization):A sequence of
latticesΛ is good for quantizationif

lim
n→∞

G (Λ) =
1

2πe
. (10)

In other words, the normalized second moment ofΛ converges
to a sphere’s normalized second moment asn → ∞. Zamir
et al., have shown that such a sequence of lattices exist [16].
Erezet al. have also shown the existence of such a sequence
of lattices and proved that goodness for covering implies
goodness for quantization [5].

Definition 7 (Lattices that achieve the Poltyrev limit):Let
z be ann-dimensional independent and identically distributed
(i.i.d) Gaussian vector,z ∼ N

(

0, θ2zI
)

. The effective radius
of z, which we denote asrz , is defined as

rz =
√

nθ2z . (11)

Consider aZ-lattice Λ and a lattice pointλ ∈ Λ, which is
transmitted across an AWGN channel:

y = λ+ z. (12)

The maximum likelihood decoder would decode to the lattice
point nearest in Euclidean distance toy. Therefore, an error
would occur only ify leaves the Voronoi region ofλ. Due to
lattice symmetry, this is equivalent toz leaving the fundamen-
tal Voronoi regionVΛ.

Pe

(

Λ, rz
)

= Pr{z 6∈ VΛ} , (13)
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wherePe

(

Λ, rz
)

denotes the probability of error.
A sequence ofZ-latticesΛ are good for AWGN channel

coding if for any rz < reff
Λ , lim

n→∞
Pe

(

Λ, rz
)

= 0 and this
decay may be bounded exponentially inn. Erez et. al. have
shown the existence of such a sequence of lattices in [5] and
they have referred to them asPoltyrev good.

Nonetheless, in order to achieve the Poltyrev capacity
in the unconstrained AWGN channel, it is sufficient for
lim Pe

n→∞

(

Λ, rz
)

= 0 for any rz < reff
Λ , i.e., Pe

(

Λ, rz
)

does

not need to decay exponentially asn→ ∞. We refer to such
a sequence of lattices aslattices that achieve the Poltyrev limit
in this paper. Loeliger has shown the existence of such lattices
in [4].

Definition 8 (Sublattice):A Z-lattice Λ is a sublattice of
(nested in) anotherZ-lattice Λf if Λ ⊆ Λf . Λ is referred to
as thecoarse latticeandΛf is referred to as thefine lattice.
The quotient groupΛf/Λ is referred to as a lattice partition
[17].

Definition 9 (Nesting ratio):Given a pair ofn-dimensional
nested latticesΛ ⊂ Λf , the nesting ratioϑ is defined as,

ϑ =

(

Vol(VΛ)

Vol(VΛf
)

)
1

n

. (14)

Definition 10 (Nested Lattice Code):Given a fineZ-lattice
Λf and a coarseZ-lattice Λ, whereΛ ⊆ Λf , a nested lattice
code(Voronoi code), which we refer to asL, is the set of all
coset leaders inΛf that lie in the fundamental Voronoi region
of the coarse latticeΛ [18]:

L = VΛ ∩ Λf =
{

λf : QΛ

(

λf
)

= 0, λf ∈ Λf

}

. (15)

In other words,L is a set of coset representatives of the
quotient groupΛf/Λ.

The coding rateof a nested lattice code, denoted asR is
defined as,

R = logϑ. (16)

A. Construction A forZ-lattices

One way to constructZ-lattices is to use the following
procedure, which is referred to asConstruction A[19]:

Let q be a natural prime andk, n be integers such that
k ≤ n. Then, letG ∈ Fn×k

q .

1) Define the discrete codebookC = {x = Gy : y ∈ Fk
q}

where all operations are overFq. Thus,x ∈ Fn
q .

2) Generate theZ-lattice ΛC asΛC , {λ ∈ Zn : λ mod
q ∈ C}, where themod operation is applied to each
component ofλ.

3) ScaleΛC with q−1 to obtainΛ = q−1ΛC .

We would like to note that only the first two steps that we have
stated in Construction A is required to build a lattice, since
the third step simply scales the lattice. However when Erez
et. al.prove the existence of lattices built with Construction A
that are good for covering in [5], they keepreff

Λ approximately
constant asn→ ∞ andq → ∞, which is possible only if the
third step is used for scaling the lattice.

B. NestedZ-lattices obtained from Construction-A [1]

Let Λ be an n-dimensionalZ-lattice obtained through
Construction-A with a corresponding generator matrixB. For
a givenG ∈ Fn×k

q , denoteΛ′ as the correspondingZ-lattice
obtained through Construction-A usingG as the generator
matrix of the underlying linear code. Generate theZ-lattice
Λf as Λf = BΛ′. It can be observed thatΛ ⊂ Λf with a
coding rate ofkn log q.

IV. COMPUTE-AND-FORWARD WITH Z-LATTICES

One way to implement network coding for the system
model considered in this paper is for each relay to decode
to wl individually, then form f

m
and forward it through

the network, which is commonly referred as decode-and-
forward. As the number of source nodesL increase, decode-
and-forward is limited by self-interference since other trans-
mitted messages are treated as noise when decoding towl

individually. Therefore, one way to mitigate the effect of self-
interference would be for relaym to directly decode tof

m
from y

m
instead of decoding towl’s individually. Such an

approach is commonly referred to as compute-and-forward,
which was introduced by Nazer and Gastpar in [11] and results
in achieving substantially higher rates than other forwarding
paradigms such as amplify-and-forward, decode-and-forward,
compress-and-forward in many situations.

In [11], Nazer and Gastpar use nested lattice codes to
implement the compute-and-forward paradigm. Since lattices
are closed under integer combinations, the relays attempt to
decode to a linear combination of codewords with integer
coefficients. This can then be shown to correspond to decoding
linear combinations over the finite field. We briefly discuss
how lattice codes are constructed to implement the compute-
and-forward paradigm in [11].

A fine Z-latticeΛf and a coarseZ-latticeΛ nested inΛf , is
constructed as mentioned in Section III-B with a coding rate
R = k

n log q. If Λ is simultaneously good for covering and
good for AWGN channel coding, it follows thatΛf is good
for AWGN channel coding [1]. BothΛ andΛf are scaled such
thatσ2

Λ = P/2. Following this, the lattice codebookΛf ∩ VΛ

is constructed.
Source nodel partitions its information vectorwl ∈ F

2k
q into

wR
l , w

I
l ∈ Fk

q , and maps them to lattice codewordstRl , t
I
l ∈

Λf ∩ V , respectively, via a bijective mapping̃ψ,

ψ̃(w) =
[

Bq−1g(Gw)
]

, (17)

wherew ∈ Fk
q , andg is the trivial bijective mapping between

{0, 1, · · · , q− 1} andFq. Hence,tRl = ψ̃
(

wR
l

)

, tIl = ψ̃
(

wI
l

)

.
It then constructs dither vectorsdRl , d

I
l , which are uniformly

distributed withinV and subtracts these dither vectors from
the lattice codewordstRl , t

I
l , respectively, and transmits the

following:

xl =
([

tRl − dRl

]

mod Λ
)

+ j
([

tIl − dIl

]

mod Λ
)

. (18)

Recall that given a channel coefficient vectorhm ∈ CL, relay



5

m observes

y
m

=

L
∑

l=1

hmlxl + zm. (19)

The relay approximateshm, in some sense, by a Gaussian
integer vectoram ∈ Z[i]L and its goal will be to recover the
following:

vRm =

[

L
∑

l=1

[

ℜ (aml) t
R
l −ℑ (aml) t

I
l

]

]

mod Λ, (20)

vIm =

[

L
∑

l=1

[

ℑ (aml) t
R
l + ℜ (aml) t

I
l

]

]

mod Λ. (21)

It proceeds by removing the dithers and scaling the observation
with αm and therefore,

ỹR
m

= ℜ
(

αmym

)

+
L
∑

l=1

ℜ (aml) d
R
l −ℑ (aml) d

I
l

= vRm + zReq,m, (22)

and

ỹI
m

= ℑ
(

αmym

)

+
L
∑

l=1

ℑ (aml) d
R
l + ℜ (aml) d

I
l

= vIm + zIeq,m, (23)

whereαm is the MMSE scaling coefficient that minimizes the
variance ofzReq,m+ jzIeq,m. The relay quantizes̃yI

m
, ỹR

m
to the

closest lattice points in the fine latticeΛf modulo the coarse
latticeΛ and estimates the following:

v̂Rm =
[

Q
(

ỹR
m

)]

mod Λ, (24)

v̂Im =
[

Q
(

ỹI
m

)]

mod Λ, (25)

whereQ denotes the quantization with respect toΛf . Finally,

the relay mapŝvRm and v̂Im to f̂
R

m
and f̂

I

m
, respectively, via

ψ̃−1,

ψ̃−1(v) =
(

G
T
G
)−1

G
T g−1

(

q
([

B
−1v mod Λ

]))

, (26)

wherev ∈ F
n
q . Hence,

ψ̃−1
(

v̂Rm

)

= f̂
R

m
=

L
⊕

l=1

(

bRmlŵ
R
l ⊕

(

−bIml

)

ŵI
l

)

, (27)

ψ̃−1
(

v̂Im

)

= f̂
I

m
=

L
⊕

l=1

(

bImlŵ
R
l ⊕

(

bRml

)

ŵI
l

)

, (28)

where

bRml = ℜ (aml) mod q, (29)

bIml = ℑ (aml) mod q. (30)

Note that both[bR1 , . . . , b
R
M ] and[bI1, . . . , b

I
M ] are required to be

full rank so that decoding eachwR
l , w

I
l at the final destination

is feasible.
In [11], Nazer and Gastpar show the following theorem

using the coding scheme we have described in this section.

Theorem 11 (Nazer and Gastpar):At relaym, givenhm ∈
CL andam ∈ Z[i]L, a computation rate of

R(hm, am) = log+





(

‖am‖2 − P |hHmam|2
1 + P‖hm‖2

)−1


 , (31)

is achievable.
Given H and assuming that the relays do not cooperate

with each other, each relay would attempt to pick an integer
vectoram that maximizes its individual computation rate, i.e.
am = argmax

a∈Z[i]L
R(hm, am) in order to maximizeR (H,A).

V. COMPUTE-AND-FORWARD WITH LATTICES OVER

EISENSTEIN INTEGERS

The main result in this section is that for some channel
realizations, higher information rates than those in Theorem 11
are achievable. The improved information rate is obtained
by considering nested lattices over Eisenstein integers which
allow themth relay to decode a linear combination of the form
∑L

l=1 amltl, whereaml ∈ Z[ω]. This result is made precise in
Theorem 15.

One of the key challenges in proving this achievability result
is to show the existence of nested lattices over Eisenstein
integers, which we refer to asZ[ω]-lattices, where the coarse
lattice is good for covering and the fine lattice can achieve
the Poltyrev limit. We would like to note that, we do not
prove the existence ofZ[ω]-lattices that are good for AWGN
channel coding, i.e. lattices for which the error probability can
be bounded exponentially inn, in this paper. Furthermore, we
do not require the coarse lattice in the sequence of nested
lattices to be simultaneously good for AWGN channel coding
and good for covering. In order to state our main theorem, it
suffices to show the existence of nestedZ[ω]-lattices where
the coarse lattice is good for covering and the fine lattice
can achieve the Poltyrev limit. A similar result is obtained
in [20], where the coarse lattice is chosen to be good only for
quantization and the fine lattice to be good for AWGN channel
coding in order to achieve12 log(1+SNR) using lattice codes
for the point-to-point AWGN channel.

In what follows, we first provide some preliminaries about
Eisenstein integers and summarize Construction A forZ[ω]-
lattices. Afterwards, we show that nestedZ[ω]-lattices where
the coarse lattice is good for quantization and the fine lattice
achieves the Poltyrev limit can be obtained through Con-
struction A. The existence result can then be used to prove
Theorem 15, which is the main result of this paper. SinceZ[ω]
quantizesC better thanZ[i], on the average (over the channel
realizations), higher information rates are achievable byusing
Z[ω]-lattices compared to usingZ-lattices. The superiority of
the proposed scheme will be further confirmed in Section VI
where we provide numerical results to compare the out-
age performance and error-correcting performance of lattices
over natural integers and lattices over Eisenstein integers in
compute-and-forward.

A. Preliminaries: Eisenstein Integers

An Eisenstein integer is a complex number of the form
a + bω where a, b ∈ Z and ω = − 1

2 + j
√
3
2 . The ring
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of Eisenstein integersZ[ω] is a principal ideal domain, i.e,
a commutative ring without zero divisors where every ideal
can be generated by a single element. Other well-known
principal ideal domains areZ and Z[i]. A unit in Z[ω] is
one of the following:{±1,±ω,±ω2}. An Eisenstein integer̺
is an Eisenstein prime if either one of the following mutually
exclusive conditions hold [21]:

1) ̺ is equal to the product of a unit and any natural prime
congruent to2 mod 3.

2) |̺|2 = 3 or |̺|2 is any natural prime congruent to1 mod
3.

An n-dimensionalZ[ω]-lattice can be written in terms of a
complex lattice generator matrixB ∈ Cn×k:

Λ = {λ = Be : e ∈ Z[ω]k} (32)

B. Construction A forZ[ω]-lattices

Let ̺ be an Eisenstein prime with|̺|2 = q. SinceZ[ω] is a
principal ideal domain,̺Z[ω] is an ideal ofZ[ω] and together
they form the quotient ringZ[ω]/̺Z[ω]. Moreover, since̺
is an Eisenstein prime,̺Z[ω] is a prime ideal and hence a
maximal ideal (a property for principal ideal domains). Thus,
the quotient ring is isomorphic to a field

Z[ω]/̺Z[ω] ∼= Fq. (33)

i.e., there exists a ring isomorphismσ : Z[ω]/̺Z[ω] → Fq [22,
page 118]. Note thatZ[ω] is the union ofq cosets of̺ Z[ω]

Z[ω] = ∪
s∈S

(̺Z[ω] + s) (34)

whereS represents the set ofq coset leaders ofZ[ω]/̺Z[ω].
One has the canonical ring homomorphism [22, page 118]
mod ̺Z[ω] : Z[ω] → Z[ω]/̺Z[ω] to homomorphically map
an element inZ[ω] to its coset leader. Now composing
mod ̺Z[ω] andσ, one obtains the ring homomorphism̃σ ,

σ ◦ mod ̺Λ : Z[ω] → Fq. Note thatσ̃ can be extended to
vectors in a straightforward manner by mapping the elements
of the vector componentwise to another vector [14, page 197].
We would like to mention that the aforementioned properties
also hold for lattices that are constructed over any other
principal ideal domain such asZ or Z[i]. For example, the
mod q operation in Construction A forZ-lattices also provides
a ring homomorphism. We now define Construction A for
Z[ω]-lattices as follows.

Let ̺ be an Eisenstein prime andq = |̺|2. Note thatq is
either a natural prime or the square of a natural prime. Also
let k, n be integers such thatk ≤ n and letG ∈ Fn×k

q . Similar
to a Z-lattice, aZ[ω]-lattice can be obtained by Construction
A [14].

1) Define the discrete codebookC = {x = Gy : y ∈ Fk
q}

where all operations are overFq. Thus,x ∈ Fn
q .

2) Generate then-dimensionalZ[ω]-lattice ΛC as ΛC ,

{λ ∈ Z[ω]n : σ̃(λ) ∈ C}.
3) ScaleΛC with ̺−1 to obtainΛ = ̺−1ΛC .

Once again, we would like to note that only the first two steps
that we have stated in Construction A is required to build a
Z[ω]-lattice. However,due to the fact that we will prove the
existence ofZ[ω]-lattices that are good for covering in this

paper using similar proof techniques in [5], we also require
the third step which scales the lattice. An example of such
a construction withk = 1, n = 1,G = [1], ̺ = 2 −

√
3j,

q = 7 and the corresponding ring homomorphism is shown in
Fig. 2. In this figure, the green circles represent̺Z[ω] and the
red lines represent the boundaries of their Voronoi regions. It
can be observed that there are exactlyq = |̺|2 = 7 lattice
points that belong toZ[ω] that lie within each Voronoi region
of the lattice points that belong to̺Z[ω]. It can also be verified
that the mapping (labeling) in Fig. 2 fromZ[ω]/̺Z[ω] to Fq

, i.e., σ̃ is indeed a ring homomorphism. We would like to
note that the lattice in Fig. 2 is triviallyZ[ω]. Unfortunately,
we were not able to provide a less trivial figure with a larger
dimensionalZ[ω]-lattice. This is due to the fact that even a
two-dimensionalZ[ω]-lattice requires four real dimensions to
be drawn, which is not feasible.

−4 −3 −2 −1 0 1 2 3 4
−4
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1

2

3

4
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6
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654

4

4 5
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1

0
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3
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4

3

3

2

2

1

1 00

4 5 6

6 0

3

32

1

1

0

0 54

4

0

2

0

Fig. 2. ΛC with G = [1] and the corresponding ring homomorphism

Given n, k, q, we define an(n, k, q,Z[ω]) ensemble as the
set ofZ[ω]-lattices obtained through Construction-A where for
each of these lattices,Gij are i.i.d with a uniform distribution
overFq.

Theorem 12:A lattice Λ drawn from an (n, k, q,Z[ω])
ensemble, wherek < n but grows faster thanlog2 n, q is
a natural prime congruent to1 mod 3, and wherek, q satisfy

qk =

(√
3
2

)n

VB
(

reff
Λ

) =

(√
3
2

)n

Γ (n+ 1)

πn
(

reff
Λ

)2n

≈
√
2nπ

(√
3

2

)n(

2n

2 exp(1)
(

reff
Λ

)2

)n

, (35)

and

rmin < reff
Λ < 2rmin, (36)
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where0 < rmin <
1
4 , is good for covering, i.e,

rΛcov

reff
Λ

→ 1, (37)

in probability asn→ ∞.
Proof: We would like to note that the steps we follow

in this proof are similar to the proof of Theorem 2 in [5].
The most important differences are as follows. Instead of
considering the lattice points that lie within the fundamental
Voronoi region of the latticeZn, which is ann-dimensional
unit cube, we consider the lattice points that lie within the
fundamental Voronoi region of the latticeZ[ω]n, which is an
n-dimensional hexagon. Furthermore, since we are constrained
to q congruent to1 mod 3, Bertrand’s postulate is not suffi-
cient to show the existence of suchq that satisfies (35) and (36)
ask grows. Therefore, we use the result in [23] to show such
prime numbers exist. For the rest of the proof, see Appendix B.

We would like to note that a variant of Theorem 12 can also
be proven forq congruent to2 mod 3, which in this case we
can constructΛ from linear codes overFq2 .

Corollary 13: A lattice Λ drawn from an(n, k, q,Z[ω])
ensemble, wherek < n but grows faster thanlog2 n and where
k, q satisfy (35) and (36) is good for quantization, i.e.,

G (Λ) → 1

2πe
, (38)

in probability asn→ ∞.
Proof: It was shown in [16] that a lattice ensemble which

is good for covering is necessarily good for quantization. Thus
from Theorem 12, the result follows.

C. NestedZ[ω]-lattices obtained from Construction-A

NestedZ[ω]-lattices can be obtained from Construction-A
very similar toZ-lattices as mentioned in Section III-B. The
coarse latticeΛ is obtained through Construction-A as men-
tioned in Section V-B with a corresponding generator matrix
B. For a givenG ∈ Fn×k

q , denoteΛ′ as the corresponding
Z[ω]-lattice obtained through Construction-A usingG as the
generator matrix of the underlying linear code. Generate the
Z[ω]-latticeΛf asΛf = BΛ′. It can be observed thatΛ ⊂ Λf

with a coding rate of k2n log q. Given n, k, q andΛ where
Λ is a Z[ω]-lattice obtained from Construction-A, we define
the (n, k, q,Λ,Z[ω]) ensemble as the set of lattices obtained
from Λ and Construction-A as previously mentioned where
for each of these lattices, the elements of the generator matrix
of the underlying linear codeGij is i.i.d with a uniformly
distribution overFq.

Theorem 14:There exists a pair of nestedZ[ω]-lattices
where the coarse lattice is good for covering and the fine lattice
achieves the Poltyrev limit.

Proof: For this proof, we build nestedZ[ω]-lattices as
mentioned above. Using our result from Theorem 12, we
pick a coarse latticeΛ which is good for covering. We then
pick Λf from the (n, k, q,Λ,Z[ω]) ensemble as described in
Section V-C and show that the Minkowski-Hlawka theorem
can be proven for this ensemble [4]. We would like to note
that the steps we follow are very similar to the steps followed

in [4]. Some of the important differences are as follows. Since
we are constructingZ[ω]-lattices, we consider the fundamental
Voronoi region of the latticeZ[ω]n which has a volume of
(√

3
2

)n

. Therefore this should be taken into account when

Vol
(

VΛf

)

is kept constant asn → ∞. In the detailed proof
provided in Appendix C, it can be observed that a lattice
Λf picked from the(n, k, q,Λ,Z[ω]) ensemble achieves the
Poltyrev limit as long as the generator matrixB of Λ is full
rank. We would like to note that this result is a generalized
version of what was stated in [4] whereB was assumed to
be an identity matrix. One of the consequences of picking an
arbitrary full rank matrixB would be thatVΛ might stretch out
in some dimensions while shrinking in others. Nonetheless,
since the growth ofq in Theorem 12 ensures thatq → ∞,
there is exactly one element in the kernel ofσ̃ contained in
the bounded region, i.e., the left term of (114) vanishes, and
the result holds.

Now, we are ready to state the main theorem in the paper.
Theorem 15:At relaym, givenhm andam, a computation

rate of

R(hm, am) = log+





(

‖am‖2 − P |hHmam|2
1 + P‖hm‖2

)−1


 , (39)

whereaml ∈ Z[ω], is achievable.
Proof:

We would like to note that the steps we follow in this proof
are very similar to the proof of Theorem 5 in [11]. Nonethe-
less, there are some important differences we would like to
point out. Sinceaml are Eisenstein integers in our framework,
their real and imaginary components are not independent and
we cannot use a real and imaginary decomposition as in [11].
Therefore, the channel coefficients and channel noise cannot
be decomposed into real and imaginary components either.
Due to this, we are constrained to employZ[ω]-lattices in our
framework. Furthermore, in order to obtainbml from aml, we
use a ring homomorphismσ, which can be thought of as the
equivalent of a modulo operation foraml ∈ Z. We would also
like to mention that this proof can be trivially extended to the
case where information vectors at transmitters have different
lengths by considering a sequence of nested lattice codes. We
proceed as follows.

Using the result from Theorem 14, a fineZ[ω]-lattice Λf

and a coarseZ[ω]-lattice Λ, which is nested inΛf with a
corresponding coding rateR2 = k

2n log q, is chosen such that
Λf achieves the Poltyrev limit andΛ is good for covering.
Both Λ andΛf are scaled such thatσ2

Λ = P . Following this,
the lattice codebookΛf ∩ VΛ is constructed.

Source nodel maps its information vectorwl ∈ Fk
q , where

q = |̺|2 and̺ is an Eisenstein prime, to a lattice codeword
tl ∈ Λf ∩ VΛ, respectively, via a bijective mappingψ,

tl = ψ(w) =
[

B̺−1σ−1(Gw)
]

, (40)

where σ was defined in Section V-B. It then constructs a
dither vectordl, which is uniformly distributed withinVΛ and
subtracts this dither vector from the lattice codewordtl and
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transmits the following:

xl = [tl − dl] mod Λ. (41)

Given a channel coefficient vectorhm ∈ CL, relaym observes

y
m

=

L
∑

l=1

hmlxl + zm. (42)

The relay approximateshm, in some sense, by an Eisenstein
integer vectoram ∈ Z[ω]L and its goal will be to recover the
following:

vm =

[

L
∑

l=1

(amltl)

]

mod Λ. (43)

It proceeds by removing the dithers and scaling the observation
with αm, and therefore,

ỹ
m

= αmym +

L
∑

l=1

amldl, (44)

whereαm is the MMSE coefficient.
Then ỹ

m
is quantized to the closest lattice point in the

fine latticeΛf modulo the coarse latticeΛ and estimates the
following:

v̂m =
[

QΛf

(

ỹ
m

)]

mod Λ, (45)

whereQΛf
denotes the quantization with respect toΛf . The

remaining steps of the proof would be identical to the steps in
the proof of Theorem 5 in [11] with the only difference being
as follows. The relay mapŝvm to f̂

m
via ψ−1, where

ψ−1 (v̂m) = f̂
m

=
(

G
T
G
)−1

G
Tσ
(

̺
([

B
−1v̂m mod Λ

]))

=

L
⊕

l=1

bmlŵl,

(46)

andbml = σ (aml).
Due to the fact thatΛ is good for covering and the

dithers are uniformly distributed inVΛ, the probability density
function of the equivalent noisezeq,m is upper-bounded by a
zero-mean complex Gaussian with a variance that approaches
|αm|2+P ||αmhm−am||2 multiplied by a constant asn→ ∞
([11, Lemma 8]). We would like to note that the error
probability Pr

(

zeq 6∈ VΛf

)

goes to zero asn → ∞, however
this decay is not necessarily exponential inn, since we have
only proven the existence ofZ[ω]-lattices which achieve the
Poltyrev limit and this result does not provide information
about the error exponents of such lattices. Nonetheless, itis
sufficient to achieve the computation rate in (39).

Given H and assuming that the relays do not cooperate
with each other, each relay would attempt to pickam ∈
Z[ω]L that maximizes its individual computation rate, i.e.
am = argmax

a∈Z[ω]L
R(hm, am) in order to maximizeR (H,A).

A straightforward method to determine the optimalam would
be to employ an exhaustive search over allam that satisfies
‖am‖2 < 1+‖hm‖2P ([11, Lemma 1]). One major challenge
in the compute-and-forward paradigm is that for largeP and
L, exhaustively searching optimalam becomes infeasible.

Nonetheless, this problem can be molded into a different
form which enables the utilization of much more efficient
algorithms (see [12] forZ[i] and [13] forZ[ω] for example.)
In the following subsection, we review this approach for the
sake of completeness.

D. An efficient algorithm for choosingam
As can be seen in ([11]), upon scalingy

m
with the MMSE

coefficientαm, the effective noise variance at relaym, which
we denote asσ2

eff,m, can be computed as

σ2
eff,m = |αm|2 + P‖αmhm − am‖2, (47)

where

αm =
PhHmam

1 + ‖hm‖2 . (48)

Furthermore, the achievable computation rate at each relaycan
be expressed in terms ofP andσ2

eff,m as

R (hm, am) = log+

(

P

σ2
eff,m

)

. (49)

Therefore,

argmax
am∈Z[ω]L

R (hm, am) = argmin
am∈Z[ω]L

σ2
eff,m. (50)

We now take a closer look atσ2
eff,m. Substituting (48) in

(47), it can be observed that

σ2
eff,m = PaHmam − P 2aHmhmh

H
mam

1 + P‖hm‖2

= PaHm

(

I− Phmh
H
m

1 + P‖hm‖2

)

am (51)

Due to the Matrix Inversion Lemma [24],

I− Phmh
H
m

1 + P‖hm‖2 =
(

I + Phmh
H
m

)−1

, (52)

andσ2
eff,m can be expressed as

σ2
eff,m = PaHm

(

I + Phmh
H
m

)−1

am. (53)

Note that
(

I + Phmh
H
m

)

, which we denote asS, is a Hermi-
tian matrix. Therefore, the singular value decomposition of S
can be expressed asVDV

H , whereD is a diagonal matrix
which has the eigenvalues ofS as non-zero entries andV is an
orthogonal matrix which has the corresponding eigenvectors
of S in its columns. Hence,

σ2
eff,m = PaHm

(

VD
−1

V
H
)

= P‖D−1/2
V

Ham‖2, (54)

and therefore it can be concluded that

argmin
a
m
∈Z[ω]L

σ2
eff,m = argmin

a
m
∈Z[ω]L

‖D−1/2
V

Ham‖2. (55)

Thus, the search in (55) is equivalent to finding the non-
zero minimal Euclidean norm point generated byD

−1/2
V

H
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as a Z[ω]-lattice, which is commonly referred to as the
shortest vector problem (SVP). For reasonable values ofL,
e.g.L ≤ 32, one of the shortest lattice vectors can be found
via a Pohst enumeration or a Schnorr-Euchner enumeration
in a way similar to standard sphere decoding [25][26]. A
polynomial-time method to approximate (55) is based on LLL
reduction [27]. For our lattices, an LLL overZ[ω] should be
used as devised by Napias for Euclidean rings [28] including
bothZ[i] andZ[ω]. Also in [29], LLL has been proposed in a
different methodology with no singular value decomposition
of S. Finding approximately optimalam efficiently is an active
research area. The interested reader is referred to [30] andthe
references therein.

VI. N UMERICAL RESULTS

In this section, we present some numerical results on the
achievable computation rates withZ[ω]-lattices and compare
them to the maximum achievable rates withZ-lattices. We
consider the case ofL = 2 transmitters and there isM =
1 relay. For a given channel coefficient vectorh, let RE(h)
andRG(h), denote the maximum achievable rate usingZ[ω]-
lattices andZ-lattices, respectively, i.e.,

RE(h, P ) = max
a∈Z[ω]2

log+





(

‖a‖2 − P |hHa|2
1 + P‖h‖2

)−1


 , (56)

and

RG(h, P ) = max
ã∈Z[i]2

log+





(

‖ã‖2 − P |hH ã|2
1 + P‖h‖2

)−1


 . (57)
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2
)

Im
(h

2)

 

 RE(h) > RG(h)

RE(h) < RG(h)

RE(h) = RG(h)

Fig. 3. Regions ofℜ (h2) ,ℑ (h2) where RG(h, P ) > RE(h, P ),
RG(h, P ) < RE(h, P ) or RG(h, P ) = RE(h, P ): SNR=10 dB

In Fig. 3, we fix h1 = 1 and chooseh2 such that
ℜ(h2),ℑ(h2) ∈ [−4, 4]. We would also like to note that we
do not impose a probability distribution onh2. For each pair

(h1 = 1, h2), we plot the region whereRG(h) > RE(h),
RG(h) < RE(h) or RG(h) = RE(h). For the total number
of realizations considered,RE > RG, RE < RG. and
RE = RG for 22.6%, 15.9%, and61.5% of the realizations,
respectively. One might expect thatZ[ω]-lattices would attain
a greater maximum achievable rate whenh2 is closer to an
Eisenstein integer,Z-lattices would attain a greater maximum
achievable rate whenh2 is closer to a Gaussian integer and
both lattices would achieve the same maximum achievable rate
whenh2 is closer to a natural integer. However as seen from
Fig. 3, other factors also contribute to the maximum achievable
rate. For example when‖h2‖ ≫ ‖h1‖ or ‖h2‖ ≪ ‖h1‖, the
relay choosesa1 = 0, ‖a2‖ = 1 or ‖a1‖ = 1, ‖a2‖ = 0,
respectively since treating the other transmitted signal as noise
(decode-and-forward) results in maximum achievable rate.
Also, the MMSE scaling coefficientα plays a very important
role as seen in (22), (23) and (44). Note that (56) and (57)
can be written as

RE(h, P ) = max
a∈Z[ω]2

log+





1 + P‖h‖2

‖a‖2 + P
(

‖a‖2|h‖2 − |hHa|2
)





(58)

and

RG(h, P ) = max
ã∈Z[i]2

log+





1 + P‖h‖2

‖ã‖2 + P
(

‖ã‖2|h‖2 − |hH ã|2
)



 ,

(59)

respectively.
As one can see from the denominators in (58) and (59),

it is desirable to aligna (ã) with h as much as possible
in order to minimize the second term. However, whenh 6∈
Z[i]2,h 6∈ Z[ω]

2, or the elements ofh cannot be written as the
ratio of Gaussian integers or Eisenstein integers, orh is not
a rotated version of a Gaussian integer vector or Eisenstein
integer vector,‖a‖ → ∞ (‖ã‖ → ∞) for perfect alignment.
Unfortunately, this results in the first term of the denominator
to grow and hence there is a tradeoff. Therefore even though
h2 might be closer to an Eisenstein integer (Gaussian integer),
i.e. h is aligned better with a vector inZ[i]2 (Z[ω]2), the
magnitude of this vector might be too large and thus a larger
computation rate may be achieved by choosinga ∈ Z[i]2

(ã ∈ Z[ω]
2).

In Fig. 4, we fix the channel realization to be
h = [1.4193 + j0.2916; 0.1978 + j1.5877] and compare
RE(h, P ), RG(h, P ) for different SNRs. For this particularh,
it can be observed thatZ[ω]-lattices can achieve substantially
higher rates thanZ-lattices in the medium SNR regime. We
would like to note that this is not necessarily the case for every
channel realization, nonetheless it is a perfect example ofhow
channel realizations affect the performance ofZ[ω]-lattices and
Z-lattices. Therefore, a larger number of channel realizations
should be considered in order to make a fair comparison of
their performance in the average sense.
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Fig. 4. A comparison ofRE(h, P ) and RG(h, P ) for h = [1.4193 +
j0.2916; 0.1978 + j1.5877]

A. Outage performance comparison ofZ-lattices vs.Z[ω]-
lattices in compute-and-forward

In this subsection, we compare the outage performance lat-
tice codes overZ and lattice codes overZ[ω] for compute-and-
forward. Given a target rateRT and a probability distribution
P on h, i.e. h ∼ P , we define the outage event of usingZ-
lattices andZ[ω]-lattices asRG(h) < RT andRE(h) < RT ,
respectively. In Fig. 5, we plot the outage probability with
Z[ω]-lattices andZ-lattices as a function of SNR (P ) where
ℜ (h1) ,ℑ (h1) ,ℜ (h2) ,ℑ (h2) ∼ N (0, 1). We average over
100000 realizations ofh at each SNR and choose the target
rate to beRT = 1/2 log2 7 bits/symbol/Hz. As seen in Fig.
5, there is a 0.4 dB gain from usingZ[ω]-lattices instead of
Z-lattices in terms of outage performance. We would like to
note that this gain comes with no additional computational
complexity.

B. Error correcting capability ofZ-lattices vs.Z[ω]-lattices
in compute-and-forward

In this subsection, we compare the error-correcting capa-
bility of lattice codes overZ and lattice codes overZ[ω] for
compute-and-forward. Before we do that, we would like to
point out that in general, the nested lattice shaping adopted
in the previous sections is very difficult to be implemented.
In fact, it is equivalent to the SVP and hence is NP-hard.
In practice, one could trade performance for complexity by
considering the use of hypercube shaping. Then the proposed
scheme would reduce to the concatenation of a linear code over
Fq with a constellation corresponding to a set of minimum
energy coset leaders of the quotient ringZ[ω]/̺Z[ω] (or
Z/qZ). In the following, we compare the error-correcting
capability for this practical scheme.

In order to construct a lattice code over Eisenstein in-
tegers, we have used a rate 1/2, regular (3,6), uniformly
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Fig. 5. Outage Probability ofZ[ω] Lattices vsZ Lattices

distributed edge weight, length 10000 LDPC code overF25

and mapped each codeword component to the constellation
carved fromZ[ω]/5Z[ω] via a ring homomorphism. In order
to construct a lattice code over natural integers, we have
used a rate 1/2, regular (3,6), uniformly distributed edge
weight, length 10000 LDPC code overF5 and mapped each
codeword component to the coset leaders of the quotient ring
Z/5Z, i.e. {−2,−1, 0, 1, 2}. Note that for the lattice code
over natural integers, we considerF5 due to the real and
imaginary decomposition. We have generated 100000 channel
realizations, used these channel realizations over a rangeof
SNR, and we have plotted the average symbol error probability
of these lattice codes for the compute-and-forward framework.
As seen in Fig. 6 simulation results show that lattice codes over
Eisenstein integers outperform lattice codes over integers by
roughly 0.4 dB, which is consistent with our outage simulation
results.

VII. C ONCLUSION

In this paper, we have shown the existence of lattices over
Eisenstein integers that are simultaneously good for quantiza-
tion and that achieve the Poltyrev limit. These lattices were
then used to generate lattice codes over Eisenstein integers
which were implemented for compute-and-forward and thus
enable the relays to decode to linear combinations of lattice
points with Eisenstein integer coefficients instead of Gaussian
integers. Due to the fact that Eisenstein integers quantize
channel coefficients better than Gaussian integers, one can
expect an increased achievable computation rate on average.
Simulation results suggest that for compute-and-forward,lat-
tice codes over Eisenstein integers provide improved outage
performance and error-correcting performance in the average
sense compared to lattice codes over integers without the cost
of additional computational complexity.
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APPENDIX

In this section, we provide the proofs for Theorem 12 and
Theorem 14. We would like to note that the proof techniques
used in proving Theorem 12 are very similar to those used
in [5] and our proof of Theorem 14 is largely based on the
proof in [4]. However, there are a few steps that have to be
re-derived since Eisenstein integers are considered. We present
the entire proof for the purpose of completeness. We first give
some definitions and preliminaries that will be very useful for
the proofs.

A. Notations and Definitions forZ[ω]-lattices

In [14, p. 54], it is stated that ann-dimensional complex
lattice can be equivalently thought of as a2n-dimensional real
lattice by the following mapping

[λ(1) · · · λ(n)]T → [ℜ(λ(1)) ℑ(λ(1)) · · · ℜ(λ(n)) ℑ(λ(n))]T
(60)

where the left hand side is ann-dimensional complex lattice
point and the right hand side is its2n-dimensional real rep-
resentation. Thus we shall considern-dimensional Eisentein
lattices as2n-dimensional real lattices and useCn andR2n

interchangeably. We shall now introduce the notation that will
be used in this section.

• S′: S \ 0, whereS is any discrete set.
• V : Fundamental Voronoi region of the latticeZ[ω]n.
• GRID: The lattice̺−1Z[ω]n, where̺ is an Eisenstein

prime.
• x∗ = x mod V = x mod Z[ω]n = x−QZ[ω]n (x) where
x ∈ Cn.

• A∗ = A mod V , whereA is any set inCn and themod
V operation is done element-wise.

• A′ , A \ {0} whereA ⊂ Rn, A ⊂ Cn or A ⊂ Fn
q

• Λ: An n-dimensionalZ[ω]-lattice nested in GRID, i.e.,
Λ ⊂ GRID .

• Vol(·): Volume of a closed set inCn, or equivalently
volume of a closed set inR2n.

• GRID∗: GRID∩ V .
• B(r):A complexn-dimensional, or equivalently real2n-

dimensional, closed set of points inside a sphere of radius
r centered at the origin.

• Λ∗: The lattice constellation, i.e.Λ∗ = Λ ∩ V . Note that
Λ∗ can generateΛ as follows:

Λ = Λ∗ + Z[ω]n. (61)

• M = |Λ∗|: Cardinality of the lattice constellation.
• Λ∗

i : A point in Λ∗, i ∈ {0, · · · ,M − 1}.

Note that by our construction, the lattices chosen from the
(n, k, q,Z[ω])-lattice ensemble are periodic modulo the region
V . Thus we can restate all the properties of our lattice in
terms of the lattice constellationΛ∗ that lies withinV . The
(n, k, q,Z[ω])-lattice ensemble has the following properties:

1) Λ∗
0 = 0 deterministically.

Proof: 0 is always a valid lattice point due to the
definition of a lattice and0∗ = 0. Thus the result holds.

2) Λ∗
i is distributed uniformly over GRID∗ for i ∈

{1, · · · ,M − 1} whereM = qk.
Proof: Each element ofG is chosen uniformly over

Fq, therefore each codeword of the underlying linear
code is distributed uniformly overFn

q . Due to last step
in Construction A in Section V-B where the lattice is
scaled with̺−1 and the ring homomorphism̃σ, the
result holds.

3) The difference(Λ∗
i − Λ∗

l )
∗ is uniformly distributed over

GRID∗ for all i 6= j.
Proof: This result holds due to the previous prop-

erty and the definition of the∗ operation.
4) |Λ∗| = qk with high probability if n− k → ∞

Proof:

Pr{rank(G) < k} ≤
∑

c 6=0

Pr

{

k
∑

i=1

ciGi = 0

}

= q−n(qk − 1), (62)

whereci would be elements of ak×1 coefficient vector
c.

We shall refer toB(r)∗ = B(r) mod V as aV-ball. Under
the assumption thatr < 1

2 , we say that(Λ∗ + B(r))∗ is a
V-covering if

V ⊆
⋃

λ∈Λ∗

(λ+ B(r))∗ . (63)

Note thatΛ+B(r) is a covering if and only if(Λ∗ + B(r))∗is
a V-covering

In our lattice ensemble, we will constraink < βn for some
0 < β < 1. Therefore Pr{rank(G) 6= k} goes to zero at
least exponentially. IfG is full rank, there areM = qk many
codewords that lie inV . Also, ann-dimensionalV is known
to have a volume of

(√
3
2

)n

. Then the volume of the Voronoi
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region of our lattice is equal to
(√

3
2

)n

q−k. In our analysis
very similar to [5], we will hold the effective radius of the
Voronoi region ofΛ, denoted asreff

Λ approximately constant
asn→ ∞. This implies the following:

qk =

(√
3
2

)n

VB
(

reff
Λ

) =

(√
3
2

)n

Γ (n+ 1)

πn
(

reff
Λ

)2n

=
√
2nπ

( √
3

2
(

reff
Λ

)2

)n
(n

e

)n
(

1 +O

(

1

n

))

. (64)

Note thatq can either be a natural prime congruent to1 mod 3
or the square of a natural prime congruent to2 mod 3,
nonetheless we shall restrictq to be a natural prime congruent
to 1 mod 3 for the sake of simplicity. We would like to note
that it is not possible to keepreff

Λ constant asn grows sinceq
has to be a natural prime congruent to1 mod 3 andk has to
be an integer. Therefore, we will relax this condition to

rmin < reff
Λ < 2rmin, (65)

asn grows, where0 < rmin <
1
4 . Although we have restricted

q to be a natural prime congruent to1 mod 3 , with the
assumption ofk ≤ βn for β < 1, (65) can be satisfied
for any large enoughn due to the following. Letq∗ be the
real number that satisfies (64) for a radius of2rmin. Then,
q∗

k

= 1

VB(
√

2√
3
2rmin)

and from (65),q must satisfy

q∗ < q < 22n/kq∗. (66)

Finally, to show that for eachn > 4 in our sequence a
correspondingq exists that satisfies (66), we use the following
lemma.

Lemma 16 ([23]): There always exists a natural prime con-
gruent to1 mod 3 between integersm and2m wherem > 4.

We would also like to note that from (64), the growth ofq
is O(n

1

β ). Thus,

lim
n→∞

n/q = 0. (67)

B. Proof: Existence ofZ[ω]-lattices that are good for covering

The proof of this theorem is divided into two parts. In the
first part, sufficient conditions are obtained such that most
Eisenstein lattices in the ensemble are “almost complete”V-
coverings. In the second part, stricter conditions are imposed
such that most of the Eisentein lattices in the ensemble are
complete V-coverings and thuscomplete coverings .

Part I: Almost complete covering

Denoted to be half of the largest distance between any
two points that lie within the Voronoi region of an element in
GRID.

d =

√

n

3q
. (68)

Note that by (66),d→ 0 asn→ ∞.
Consider the lattice constellationΛ∗ of the ensemble and

define k1, k2 such thatk1 + k2 = k. We shall denote the
Eisenstein lattice constellation obtained from the firstk1

columns ofG by Λ∗[k1] and letΛ∗[k1 + j], j = 1, · · · , k2
denote the Eisenstein lattice constellation obtained fromthe
first k1 + j columns ofG. Let x be an arbitrary point such
that x ∈ V . Let S1(x) denote the set of GRID points within
a modulo distancer− d from x whered was defined in (68).

S1(x) = GRID∗ ∩ (x+ B(r − d))
∗
. (69)

Furthermore, denoteS2(x) to be the set of GRID points such
that their Voronoi regions intersect a sphere of radiusr − 2d
centered atx.

S2(x) =
{

y ∈ GRID∗ :
(

y + ̺−1V
)

∩ (x+ B(r − 2d))
∗}
.

(70)

It can be observed thatS2(x) ⊂ S1(x). Thus, the cardinality
of S1(x) can be bounded as:

|S1(x)| ≥ |S2(x)| ≥
⌈

VB(r − 2d)/Vol(̺−1V)
⌉

=
⌈

qn(
√
3/2)−nVB(r − 2d)

⌉

. (71)

By the second property of the ensemble, the probability thatx
is covered by a sphere of radius(r− d) centered at any point
of Λ∗[k1] satisfies

Pr
{

x ∈ (Λ∗
i [k1] + B(r − d))

∗}
=

|S1(x)|/qn ≥ (
√
3/2)−nVB(r − 2d),

(72)

for i = 1, · · · ,M1−1 whereM1 = qk1 andΛ∗
i is theith point

of Λ∗. The indicator random variableηi for i = 1, · · · ,M1−1
is defined as

ηi = ηi(x)

{

1, if x ∈ (Λ∗
i [k1] + B(r − d))∗

0, otherwise

Note thati = 0 is not considered sinceΛ∗
0[k1] = 0 determin-

istically. Thus,ηi is statistically independent of bothi andx.
DefineX = X (x) as follows:

X =

M1−1
∑

i=1

ηi. (73)

Hence,X is equal to the number of nonzero codewords(r−d)-
coveringx. Computing the expectation ofX and using the
lower bound from (72),

E(X ) =

M1−1
∑

i=1

E(ηi)

≥ (M1 − 1) (
√
3/2)−nVB(r − 2d). (74)

Since theηi’s are pairwise independent and thus uncorrelated,
similar to [5] one has

Var(X ) ≤ E(X ). (75)

Using (75), by Chebyshev’s inequality, for anyν > 0

Pr
{

|X − E(X )| > 2ν
√

E(X )
}

<
Var(X )

22νE(X )
≤ 2−2ν . (76)

Define
µ(ν) = E(X ) − 2ν

√

E(X ). (77)
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Then from (76),

Pr{X < µ(ν)} < 2−2ν . (78)

If µ(ν) ≥ 1, Pr{X < 1} is upper-bounded by2−2ν as well.
A point x ∈ V will be referred asremotefrom a discrete

set of pointsA if it is not r− d-covered by(A+ B(r − d))
∗,

i.e. if x does not belong to an(r− d)- sphere centered at any
point of A. Therefore,X (x) < 1 implies that “x is remote
from Λ∗[k1]”. Define Q (A) to be the set of (continuous)
points which are remote from the discrete setA. Denote
Qi = Q (Λ∗[k1 + i]) , i = 0, 1, · · · , k2 and define

qi = |Qi|/Vol (V) , (79)

to be the fraction of (continuous) points inV which are remote
from Λ∗[k1 + i]. Then,

|Q0| =
∫

V
1 (X (x) < 1) dx (80)

≤
∫

V
1 (X (x) < µ(ν)) dx, (81)

under the condition thatµ(ν) > 1. Then, from (78) we have

E(q0) < 2−2ν . (82)

Applying Markov’s inequality we get

Pr{q0 > 2νE(q0)} < 2−ν . (83)

Using (82),
Pr{q0 > 2−ν} < 2−ν . (84)

Therefore, by takingν → ∞ and keepingµ(ν) ≥ 1, this
probability can be made arbitrarily small asn→ ∞. In order
to satisfy these constraints it is sufficient to takeν = o(log n)
and E(X ) > nλ for someλ > 0. By (74) this would be
satisfied if we choose a radiusr such that

qk1 − 1 =
nλ

VB(r − 2d)

(√
3/2
)n

. (85)

Hence, we conclude that for these choice of parameters, for
most lattices chosen from the(n, k, q,Z[ω]) ensemble,almost
all points are covered by spheres of radiusr − d.

Part II: Complete covering

We would like to obtain an ensemble ofZ[ω]-lattices such
that most of its members are able to cover all the points in
V . Q(A) is redefined to be the set of GRID∗ points, i.e.,x ∈
GRID∗ which are remote fromA and qi is redefined to be
the fraction of GRID∗ points that are remote fromΛ∗[k1 + i].
Therefore, an(r − d)-covering of all GRID points implies an
r-covering of all points inV .

By augmenting the generator matrixG with an additional
small number of columnsk2(k2 ≪ k1), the fraction of un-
covered GRID∗ points can be made smaller than1/| GRID∗|
which implies that all GRID points arer − d-covered. We
proceed as follows.

Choosek1 andq such thatk1 grows faster thanlog2 n and
(64) and (65) are satisfied. Define the set

S = Λ∗[k1] ∪
(

Λ∗[k1] +
{

σ−1(Gk1+1) ∩ V
})

, (86)

whereσ is the ring isomorphism defined in section V-B. Also
note that,

Λ∗[k1 + 1] =

q−1
⋃

m=0

(

Λ∗[k1] + σ−1 ([m · (Gk1+1)] mod q)
)

.

(87)
Hence,S ⊂ Λ∗[k1 + 1] and q1 is upper-bounded byQ(S)

|GRID|∗ .
SinceΛ∗[k1]+

{

σ−1(Gk1+1) ∩ V
}

is an independent shift of
Λ∗[k1], conditioned onΛ∗[k1], the event thatx is remote from
Λ∗[k1] +

{

σ−1(Gk1+1) ∩ V
}

is independent from whetherx
is remote fromΛ∗[k1] and the probability of such an event is
q0. Then,

E

{ |Q(S)|
|GRID∗|

∣

∣

∣q0

}

= q20 . (88)

Due to the fact thatS ⊂ Λ∗[k1+1], we haveE {q1|q0} ≤ q20 .
By Markov’s inequality,

Pr
{

q1 > 2γE(q1|q0)
∣

∣

∣q0

}

. (89)

Therefore,

Pr
{

q1 ≤ 2γ−2ν
∣

∣

∣q0 ≤ 2−ν
}

≥ 1− 2−γ . (90)

From Bayes’ rule and (84),

Pr
{

q1 ≤ 2γ−2ν
}

≥ Pr
{

q1 < 2γ−2ν, q0 ≤ 2−ν
}

(91)

≥
(

1− 2−γ
) (

1− 2−ν
)

. (92)

Repeating this procedure forl = 0, 1, . . . , k2 − 1, we obtain

ql+1 ≤ 2γE(ql+1|ql) (93)

≤ 2γq2l , (94)

with probability at least1−2−γ. Hence, the intersection of all
thesek2 events and the event thatq0 < 2−ν has the probability
(1− 2−ν) (1− 2−γ)

k2 , which implies

qk2
≤ 22

k2 (γ−ν)−γ. (95)

We would like to choosek2 such that

qk2
< q−n = 2−n log q. (96)

The interpretation of (96) isqk2
= 0 since there areqn points

in GRID∗. Therefore, choosingγ = ν − 1 and

k2 = ⌈logn+ log log q⌉, (97)

or faster suffices. Due to the fact thatk = k1+k2, we conclude
that with probability at least

(

1− 2−ν
) (

1− 2−ν+1
)(log n+log log q)

(98)

Λ∗[k] satisfiesqk2
< q−n, in other words everyx ∈ GRID∗

is covered by at least one sphere of radius(r− d). We would
like to impose a condition onν such that bothν → ∞ and the
probability in (98) goes to 1 asn→ ∞. It suffices to choose

ν = 2 log (logn+ log log q) . (99)

Note that asµ(ν) ≥ 1, the probability that there remains a
pointx ∈ GRID∗ that is not(r−d)-covered is arbitrarily small
asn → ∞. If every point of GRID∗ is (r − d)-covered, then
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V is r-covered. Thus, the probability of a complete covering
with spheres of radiusr goes to 1 wherer satisfies(see (85))

M = qk1+k2 =
nλ

VB(r − 2d)

(√
3/2
)n

qk2 (100)

≤ nλ

VB(r − 2d)

(√
3/2
)n

q(logn+log log q)+1

(101)

=
nλ

VB(r − 2d)

(√
3/2
)n

2log q[(log n+log log q)+1].

(102)

From (100) and (102),

r

reff
Λ

= 2n

√

VB(r)

VB(r − 2d)
nλqk2 (103)

≤
(

r

r − 2d

)

· nλ/2n · 2(log q logn+log q log log q+log q)/2n.

(104)

For ρcov → 1, the left-hand side of (103) should go to 1.
Hence, we require each of the three terms on the right-hand
side of (104) goes to 1. From (67) and (68), it follows that
d→ 0 asn→ ∞ provided thatk ≤ βn andβ < 1. Therefore,

lim
n→∞

(

r

r − 2d

)

= 1. (105)

For any fixedλ > 0, we havelimn→∞ nλ/2n = 1. Also, since
k grows faster thanlog2 n, by (64) we havelog p grows slower
thano log(n/ logn). Then,

lim
n→∞

2(log q logn+log q log log q+log q)/2n = 1. (106)

Thus, we have thatr
cov
Λ

reff
Λ

→ 1 in probability asn → ∞ which
completes the proof.

C. Proof: Existence of good nestedZ[ω]-lattices

Using our result from Theorem 12, letΛ be an n-
dimensional Z[ω]-lattice obtained through Construction-A
with a corresponding generator matrixB which is good for
covering.

Definition 17: A set C of linear (n, k) linear code overFn
q

is balancedif every nonzero element ofFn
q is contained in the

same number, denoted byNC of codes fromC.
Note that for fixedn, k, and q, the set of all linear(n, k)

codes overFq is balanced. We shall now state Lemma 1 in
[4].

Lemma 18:Let f(·) be an arbitrary mappingFn
q → R and

let C be a balanced set of linear(n, k) codes overFq. Then, the
average over all linear codesC in C of the sum

∑

c∈C′ f(c)
is given by

1

C
∑

C∈C

∑

c∈C′

f(c) =
qk − 1

qn − 1

∑

v∈(Fn
q )

′

f(v). (107)

For proving Theorem 14, we shall use nestedZ[ω]-lattices
obtained from Construction-A as mentioned in Section V-C. A
scaled version ofΛC denoted asγΛC , whereγ ∈ R

+ andΛC

was defined in section V-B is constructed. Then, we multiply

γΛC with the generator matrixB and obtain the latticeΛf =
γBΛC . It can be observed thatγ̺Z[ω]n ⊂ γ̺Λ ⊂ Λf and
there areqk elements ofΛf that lie within the fundamental
Voronoi region ofγ̺Λ. Hence, the volume of the fundamental
region ofΛf is

Vol
(

VΛf

)

= γ2nqn−k

(√
3

2

)n

Vol (VΛ) . (108)

We can now extend the Minkowski-Hlawka Theorem in [4] to
Eisenstein lattices as follows, following similar steps.

Theorem 19:(Minkowski-Hlawka Theorem:) Let f be a
Riemann integrable functionR2n → R of bounded sup-
port(i.e., f(v) = 0 (if ‖v‖ exceeds some bound). Then for
any integerk where0 < k < n, and any fixed Vol(VΛf

), the
approximation

1

C
∑

C∈C

∑

v∈g(γBΛ′
C
)

f(v) ≈ Vol(VΛf
)
−1
∫

R2n

f(v)dv, (109)

whereC is any balanced set of linear(n, k) codes overFq

and whereg(·) : Cn → R2n as in (60), becomes exact in the

limit q → ∞, γ → 0, γ2nqn−k
(√

3
2

)n

Vol (VΛ) = Vol
(

VΛf

)

fixed. Note that these conditions imply thatγq → ∞.
Proof:

1

|C|
∑

C∈C

∑

v∈g(γBΛ′
C
)

f(v) (110)

=
1

|C|
∑

C∈C

[

∑

v∈g((Z[ω]n)′):σ̃(v)=0

f(γBv) . . .

. . . +
∑

v∈g(Z[ω]n):σ̃(v)∈C′

f(γBv)
]

(111)

=
∑

v∈(g(Z[ω]n)′):σ̃(v)=0

f(γBv)

+
1

|C|
∑

C∈C

∑

c∈C′





∑

v∈g(Z[ω]n):σ̃(v)=c

f(γBv)



 (112)

=
∑

v∈g((Z[ω]n)′):σ̃(v)=0

f(γBv)

+
qk − 1

qn − 1

∑

c∈(Fn
q )

′





∑

v∈g(Z[ω]n):σ̃(v)=c

f(γBv)



 (113)

=
∑

v∈g((Z[ω]n)′):σ̃(v)=0

f(γBv)

+
qk − 1

qn − 1

∑

v∈g(Z[ω]n):σ̃(v) 6=0

f(γBv), (114)

where the step from (112) to (113) is due to Lemma 18 and
due to the fact thatf has bounded support, the left term of
(114) vanishes for sufficiently largeγq and the right term of
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(114) becomes

qk − 1

qn − 1

∑

v∈g((Z[ω]n)′)

f(γBv) ≈

γ−2nqk−n

(

2√
3

)n

Vol(VΛ)
−1

∫

R2n

f(v)dv, (115)

which becomes exact in the limit asγ → 0, γq → ∞, i.e, a
Riemann sum approaching to a Riemann integral. Note that the

termγ−2nqk−n
(

2√
3

)n

appears in front of the integral in (115)
since it is the reciprocal of the volume of the fundamental
Voronoi region ofΛf = γBΛC .

Suppose now that a transmitter selects a codewordx from
an Eisenstein latticeΛ ∈ Cn (or equivalentlyR2n) andx is
transmitted over an AWGN channel where a random noise
vector z ∈ Cn(or equivalentlyR2n) gets added with the
variance of each2n components equal toPz/2. The receiver
obtainsy = x + z and tries to recoverx. Furthermore, let
E ⊂ R2n be a set of typical noise vectors. We say that an
ambiguityoccurs if y can be written in more than one way
as y = x + e wherex ∈ Λ and e ∈ E. Let Pamb|E be the
probability of ambiguity given thatz ∈ E. Assuming that the
receiver is able to recoverx wheneverz ∈ E and there is no
ambiguity, the probability of decoding error is upper-bounded
by

Pe ≤ Pamb|E + P (z /∈ E). (116)

Due to the fact that Minkowski-Hlawka theorem can be proven
for Λf , the following theorem immediately follows.[4]

Theorem 20:LetE be a Jordan measurable bounded subset
of R2n and letk be an integer such that0 < k < n. Then, for
any δ > 0, for all sufficiently largeq, and for all sufficiently
smallγ, the arithmetic average ofPamb|E over all latticesΛf =
γBΛC , C ∈ C, which we denote asPamb|E , is bounded by

Pamb|E < (1 + δ)Vol(E)/Vol
(

VΛf

)

, (117)

where C is any balanced set of linear(n, k) codes over

Fq and where Vol
(

VΛf

)

, γ2nqn−kVol(VΛ)
(√

3
2

)n

is the
fundamental volume of the latticesΛf = γBΛC , C ∈ C.
Note that asn → ∞, E will approach the shell of a2n-
dimensional ball with radiusrz =

√

nPz. Thus

Vol(E) ≤ Vol(B(
√

nPz)) =

(√
πr2z

)n

Γ(n+ 1)
as n→ ∞,

(118)

which immediately follows that

Pamb|E ≤ (1 + δ)

(

rz

reff
γBΛC

)2n

, (119)

as n → ∞. This implies thatPamb|E → 0 as n → ∞ for
rz < reff

γΛC
. Hence for a given latticeΛf = γBΛC , Pamb|E →

0 in probability asn → ∞. Taking into account thatP (z /∈
E) → 0 asn → ∞, from (116) we conclude thatPe → 0 in
probability asn→ ∞. This completes the proof.
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