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Construction of Capacity-Achieving
Lattice Codes: Polar Lattices

Ling Liu , Yanfei Yan , Cong Ling, Member, IEEE, and Xiaofu Wu , Member, IEEE

Abstract— In this paper, we propose a new class of lattices
constructed from polar codes, namely polar lattices, to achieve
the capacity (1/2) log(1+SNR) of the additive white Gaussian-
noise (AWGN) channel. Our construction follows the multilevel
approach of Forney et al., where we construct a capacity-
achieving polar code on each level. The component polar codes
are shown to be naturally nested, thereby, fulfilling the require-
ment of the multilevel lattice construction. We prove that the
polar lattices are AWGN-good. Furthermore, using the technique
of source polarization, we propose discrete Gaussian shaping
over the polar lattice to satisfy the power constraint. Both the
construction and shaping are explicit, and the overall complexity
of encoding and decoding is O(N log N ) for any fixed target
error probability.

Index Terms— AWGN-good lattices, discrete Gaussian shaping,
lattice codes, multilevel construction, polar codes.

I. INTRODUCTION

AFAST-DECODABLE, structured code achieving the
capacity of the power-constrained additive white

Gaussian-noise (AWGN) channel is a major goal of commu-
nication theory. Polar codes, proposed by Arıkan in [1], can
provably achieve the capacity of binary memoryless symmetric
(BMS) channels. An attempt to construct polar codes for
the AWGN channel was given in [2], based on nonbinary
polar codes or on the technique for the multi-access chan-
nel. Although coded modulation using polar codes has been
investigated in literature [3], [4], the AWGN channel capacity
has not been achieved, to the best of our knowledge.

Lattice codes are counterparts of linear codes in the
Euclidean space. The existence of lattice codes achieving the
Gaussian channel capacity has been well established using the
random coding argument [5], [6]. In the classical point-to-
point channel, lattice codes offer a low-complexity solution
compared to Gaussian random codes. More recently, thanks
to their rich structures, lattice codes have emerged as a
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novel framework of coding for multiuser communications,
such as compute-and-forward [7], [8] and index coding [9].
In many problems of Gaussian multiuser networks, lattice
codes demonstrate a clear advantage and outperform best
known solutions based on random codes. This is because
lattice codes enjoy the benefit of coordination despite the
distributed nature of coding in a network. Readers are referred
to [10, Ch. 12] for an extensive overview of the applications of
lattice codes to Gaussian networks and their advantages over
classical random coding approaches.

It is well known that the design of a lattice code consists of
two essentially separate problems: AWGN coding and shaping.
AWGN coding is addressed by the notion of AWGN-good lat-
tices [5], [11]. Recently, several new lattice constructions with
good performance have been introduced [12]–[14]. On the
other hand, shaping takes care of the finite power constraint of
the Gaussian channel. Capacity-achieving shaping techniques
include Voronoi shaping [5] and lattice Gaussian shaping [6],
[15], [16]. Despite these significant progresses, an explicit
construction of lattice codes achieving the capacity of the
Gaussian channel is still open (since this work was completed,
we have become aware of the work [13] which shows low
density Construction-A (LDA) lattices achieve capacity when
the signal-to-noise ratio (SNR) >1 in magnitude).

In this paper, we settle this open problem by employing the
powerful tool of polarization in lattice construction. The novel
technical contribution of this work is two-fold:

• The construction of polar lattices and the proof of their
AWGN-goodness. We follow the multilevel construction
of Forney et al. [17], where for each level we build a
polar code to achieve its capacity. We prove that the
subchannels arising from some lattice partition chains
are successively degraded, which guarantees that the
component polar codes are naturally nested, as required
by the multilevel construction. This compares favorably
with existing multilevel constructions [12], where extra
efforts are needed to nest the component codes.

• The Gaussian shaping technique for polar lattices in
the power-constrained AWGN channel. This is based
on source polarization and may be viewed as inverse
source coding. Finally, our scheme is able to achieve the
capacity 1

2 log(1+SNR) with low-complexity multistage
successive cancellation (SC) decoding for any given
SNR. It is worth mentioning that our proposed shaping
scheme is not only a practical implementation of lattice
Gaussian shaping, but also an improvement in the sense
that we successfully remove the restriction SNR > e in
[6, Theorem 3].
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Overall, both source and channel polarization are employed
in the construction, resulting in an integrated approach in the
sense that error correction and shaping are performed by one
single polar code on each level. Moreover, capacity is achieved
with minimum mean-square error (MMSE) lattice decoding.
The construction of polar lattices with Gaussian shaping is as
explicit as that of polar codes themselves, and the complexity
is quasilinear: O(N log2 N) for a sub-exponentially vanishing
error probability and O(N log N) for a fixed error probability,
respectively.

All random variables (RVs) will be denoted by capital
letters. For a set I, Ic denotes its complement, and |I| repre-
sents its cardinality. Following the notation of [1], we denote
N independent uses of channel W by WN . By channel
combining and splitting, we get the combined channel WN

and the i-th subchannel W
(i)
N . Throughout this paper, we use

the binary logarithm, denoted by log, and information is
measured in bits. We follow the standard asymptotic notation
f (x) = O (g (x)) if lim supx→∞ |f(x)/g(x)| < ∞.

II. BACKGROUND ON LATTICE CODING

A lattice is a discrete subgroup of R
n which can be

represented by

Λ = {λ = Bx : x ∈ Z
n},

where the generator matrix B is assumed to be of full rank in
this paper. The theta series of Λ is defined as

ΘΛ(τ) =
∑

λ∈Λ

e−πτ�λ�2
, τ > 0.

Readers are referred to the text [10] for basic definitions of
lattices.

In this work, we are mostly concerned with the block error
probability Pe(Λ, σ2) of lattice decoding. It is the probability
P{x /∈ V(Λ)} that an n-dimensional independent and iden-
tically distributed (i.i.d.) Gaussian noise vector x with zero
mean and variance σ2 per dimension falls outside the Voronoi
region V(Λ). For an n-dimensional lattice Λ, the volume of a
fundamental region is given by V (Λ) = |det(B)|. Define the
VNR by

γΛ(σ) � V (Λ)
2
n

σ2
.

A sequence of lattices Λ(N) of increasing dimension N is
AWGN-good if, for any fixed VNR greater than 2πe,

lim
N→∞

Pe(Λ(N), σ2) = 0.

For σ > 0 and c ∈ R
n, the Gaussian distribution of mean

c and variance σ2 is defined as

fσ,c(x) =
1

(
√

2πσ)n
e−

‖x−c‖2

2σ2 ,

for all x ∈ R
n. For convenience, let fσ(x) = fσ,0(x).

Given a lattice Λ, we define the Λ-periodic function as

fσ,Λ(x) =
∑

λ∈Λ

fσ,λ(x) =
1

(
√

2πσ)n

∑

λ∈Λ

e−
‖x−λ‖2

2σ2 ,

for x ∈ R
n. Note that fσ,Λ(x) is a probability density if x is

restricted to a fundamental region R(Λ). It is actually the prob-
ability density function (PDF) of the Λ-aliased Gaussian noise,
i.e., the Gaussian noise after the mod-R(Λ) operation [17].
When σ is small, the effect of aliasing becomes insignificant
and the Λ-aliased Gaussian density fσ,Λ(x) approaches a
Gaussian distribution. When σ is large, fσ,Λ(x) approaches
a uniform distribution. This phenomenon is characterized by
the flatness factor, which is defined for Λ as [18]

�Λ(σ) � max
x∈R(Λ)

|V (Λ)fσ,Λ(x) − 1| .

It can be interpreted as the maximum variation of fσ,Λ(x)
from the uniform distribution over R(Λ).

We define the discrete Gaussian distribution over Λ cen-
tered at c ∈ R

n as the following discrete distribution taking
values in λ ∈ Λ:

DΛ,σ,c(λ) =
fσ,c(λ)
fσ,c(Λ)

, ∀λ ∈ Λ,

where fσ,c(Λ) �
∑

λ∈Λ fσ,c(λ) = fσ,Λ(c). Again for conve-
nience, we write DΛ,σ = DΛ,σ,0.

If the flatness factor is negligible, the discrete Gaussian
distribution over a lattice preserves the capacity of the AWGN
channel [6, Th. 2].

III. CONSTRUCTION OF POLAR LATTICES

We now follow Forney et al.’s multilevel approach [17] to
construct polar lattices.

A. Forney et al.’s Construction

Given a sublattice Λ� ⊂ Λ, the quotient group Λ/Λ� induces
a partition of Λ into equivalence classes modulo Λ�. We call
Λ/Λ� a lattice partition [17]. The order of the partition is
denoted by |Λ/Λ�|, which is equal to the number of cosets.
If |Λ/Λ�| = 2, we call this a binary partition. Similarly, if Λ� ⊆
Λr−1 ⊆ · · · ⊆ Λ1 ⊆ Λ for r ≥ 1 is a chain of lattices with
quotients Λ/Λ1/ · · · /Λr−1/Λ�, then Λ/Λ1/ · · · /Λr−1/Λ� is
called an n-dimensional lattice partition chain. For each par-
tition Λ�−1/Λ� (1 ≤ � ≤ r with convention Λ0 = Λ and
Λr = Λ�), a code C� over Λ�−1/Λ� selects a sequence of
representatives a� for the cosets of Λ�. Consequently, if each
partition is a binary partition, the codes C� are binary codes.

Construction D requires a set of nested linear binary codes
C1 ⊆ C2 · ·· ⊆ Cr [17]. Suppose C� has block length N and the
number of information bits k� for 1 ≤ � ≤ r. Choose a basis
g1,g2, · · · ,gN such that g1, · · ·gk�

span C�. In this work,
we focus on the one-dimensional partition chain Z/2Z/···/2r

Z

for the simplicity of presentation. Accordingly, the lattice L
admits the form [17]

L =

{
r∑

�=1

2�−1
k�∑

i=1

ui
�gi + 2r

Z
N | ui

� ∈ {0, 1}
}

(1)

where the addition is carried out in R
N . The fundamental

volume of a lattice obtained from this construction is given
by the volume of the bottom lattice Λ� as

V (L) = 2−NRCV (Λ�)N ,
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where RC =
∑r

�=1 R� = 1
N

∑r
�=1 k� denotes the sum rate of

component codes.
A mod-Λ Gaussian channel is a Gaussian channel with an

input in V(Λ) and with a mod-V(Λ) operator at the receiver
front end [17]. The capacity of the mod-Λ channel for noise
variance σ2 is

C(Λ, σ2) = log V (Λ) − h(Λ, σ2), (2)

where h(Λ, σ2) is the differential entropy of the Λ-aliased
noise over V(Λ):

h(Λ, σ2) = −
∫

V(Λ)

fσ,Λ(x) log fσ,Λ(x)dx.

Given lattice partition Λ/Λ�, the Λ/Λ� channel is a mod-Λ�

channel whose input is restricted to discrete lattice points in
(Λ + a) ∩ R(Λ�) for some translate a. The capacity of the
Λ/Λ� channel is given by [17]

C(Λ/Λ�, σ2) = C(Λ�, σ2) − C(Λ, σ2)
= h(Λ, σ2) − h(Λ�, σ2) + log(V (Λ�)/V (Λ)).

(3)

Further, if Λ/Λ1/ · · · /Λr−1/Λ� is a lattice partition chain, then

C(Λ/Λ�, σ2) = C(Λ/Λ1, σ
2) + · · · + C(Λr−1/Λ�, σ2). (4)

The key idea of [17] is to use a good component code
C� to achieve the capacity C(Λ�−1/Λ�, σ

2) for each level
� = 1, 2, . . . , r in Construction D. For such a construction,
the total decoding error probability with multistage decoding
is bounded by

Pe(L, σ2) ≤
r∑

�=1

Pe(C�, σ
2) + Pe((Λ�)N , σ2). (5)

To achieve a vanishing error probability, i.e., to make
Pe(L, σ2) → 0, we need to choose the lattice Λ� such that
Pe((Λ�)N , σ2) → 0 and that all the codes C� for the Λ�−1/Λ�

channels have error probabilities tending to zero.
Since V (L) = 2−NRCV (Λ�)N , the logarithmic VNR of L

is

log
(

γL(σ)
2πe

)
= log

V (L)
2

nN

2πeσ2

= log
2−

2
n RCV (Λ�)

2
n

2πeσ2

= − 2
n

RC +
2
n

log V (Λ�) − log 2πeσ2. (6)

Define
⎧
⎪⎨

⎪⎩

�1 = C(Λ, σ2)
�2 = h(σ2) − h(Λ�, σ2)
�3 = C(Λ/Λ�, σ2)−RC =

∑r
�=1 C(Λ�−1/Λ�, σ

2) − R�,

(7)

where h(σ2) = n
2 log 2πeσ2 is the differential entropy of

the Gaussian noise. We note that, �1 ≥ 0 represents the
capacity of the mod-Λ channel, �2 ≥ 0 (due to the data
processing inequality) is the difference between the entropy
of the Gaussian noise and that of the mod-Λ� Gaussian noise,
and �3 ≥ 0 is the total capacity loss of component codes.

Then we have

log
(

γL(σ)
2πe

)
=

2
n

(�1 − �2 + �3).

Since �2 ≥ 0, we obtain the upper bound1

log
(

γL(σ)
2πe

)
≤ 2

n
(�1 + �3). (8)

Since log
(

γL(σ)
2πe

)
= 0 represents the Poltyrev capacity [11]

[10, Th. 6.3.1], i.e., the capacity per unit volume of an
unconstrained AWGN channel, the right hand side of (8) gives
an upper bound on the gap to the Poltyrev capacity. The bound
is equal to 6.02

n (�1 + �3) decibels (dB), by conversion of the
binary logarithm into the base-10 logarithm.

To approach the Poltyrev capacity, we would like to have
Pe(L, σ2) → 0 for any log

(
γL(σ)
2πe

)
> 0. Thus, from (8),

we need that both �1 and �3 are arbitrarily small. In the
following lemma, we upper-bound �1 by the flatness factor
�Λ(σ) of the top lattice.

Lemma 1: The capacity C(Λ, σ2) of the mod-Λ channel is
bounded by

C(Λ, σ2) ≤ log (1 + �Λ(σ)) ≤ log(e) · �Λ(σ). (9)

Proof: By the definition of the flatness factor, we have

fσ,Λ(x) ≤ 1 + �Λ(σ)
V (Λ)

.

Thus, the differential entropy of the mod-Λ Gaussian noise is
bounded by

h(Λ, σ2) = −
∫

V(Λ1)

fσ,Λ(x) log fσ,Λ(x)dx

≥ −
∫

V(Λ1)

fσ,Λ(x) log
1 + �Λ(σ)

V (Λ)
dx

= − log
1 + �Λ(σ)

V (Λ)
= log V (Λ) − log (1 + �Λ(σ)).

Therefore, from (2), C(Λ, σ2) is bounded by log (1 + �Λ(σ)).
The second inequality in (9) follows from the fact log(1+x) =
log2(e) · loge(1 + x) ≤ log(e) · x for x > 0. �

Thus, we have the following design criteria:

• The top lattice Λ has a negligible flatness factor �Λ(σ).
• The bottom lattice Λ� has a small error probability

Pe(Λ�, σ2).
• Each component code C� is a capacity-approaching code

for the Λ�−1/Λ� channel.

Asymptotically, the error probability of a polar code of
codeword length N decreases approximately as O(2−

√
N ) [19]

and we may desire a similar form for the error probability
of a polar lattice. In (5), we can let Pe((Λ�)N , σ2) decrease
exponentially by increasing the volume of the bottom lattice
Λ� or equivalently by expanding the partition chain. More
explicitly, the next lemma shows that the first two ceriteria

1It was shown in [17] that ε2 ≈ πPe(Λ′, σ2), which is negligible compared
to the other two terms.
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can be satisfied by r growing with log N (see Appendix A for
a proof).

Lemma 2: Consider a partition chain Λ/Λ1/ · · · /Λr−1/Λ�.
There exists a sequence of numbers of levels r = O(log N)
such that �Λ(σ) = O(e−N ) and Pe(Λ�, σ2) = O(e−N ).

Remark 1: Lemma 2 is mostly of theoretical interest, e.g.,
for proving a partition chain with increasing levels is capacity
achieving. In practical designs, if the target error probability
is fixed, e.g., Pe(L, σ2) = 10−5, a small number of levels will
suffice. This is because one can choose a top lattice such that
�Λ(σ) ≈ 10−2 and a bottom lattice such that Pe(Λ�, σ2) ≈
10−6, for instance. In fact, it was shown in [17] that a two-
level partition chain Z/2Z/4Z is enough if n = 1, although
slightly more levels are needed if n > 1. Readers are referred
to [17] for more details and Section V for design examples.

B. Polar Lattices

It is shown in [17] that the Λ�−1/Λ� channel is symmetric,
and the optimum input distribution is uniform [17]. Since we
use a binary partition Λ�−1/Λ�, the input X� is binary for � ∈
{1, 2, . . . , r}. Associate X� with representative a� of the coset
in the quotient group Λ�−1/Λ�. The fact that the Λ�−1/Λ�

channel is a BMS channel allows a polar code to achieve its
capacity.

Let Y denote the output of the AWGN channel. Given
x1:�−1, let A�(x1:�) denote the coset chosen by x�,
i.e., A�(x1:�) = a1 + · · · + a� + Λ�. The conditional PDF
of this channel with input x� and output ȳ� = y mod Λ� is
given by [17]

PȲ�|X�,X1:�−1
(ȳ�|x�, x1:�−1)

= fσ,Λ�
(ȳ� − a1 − · · · − a�)

=
1√
2πσ

∑

a∈A�(x1:�)

exp

(
−‖ȳ� − a‖2

2σ2

)
. (10)

Definition 1: (Channel degradation [20]): Consider two
channels W1 : X → Y1 and W2 : X → Y2. Channel W1

is said to be (stochastically) degraded with respect to W2 if
there exists a channel Q : Y2 → Y1 such that

W1(y1|x) =
∑

y2∈Y2

W2(y2|x)Q(y1|y2).

The proof of the following lemma is given in Appendix B.
Lemma 3: Consider a self-similar binary lattice partition

chain Λ/Λ1/ · · · /Λr−1/Λ�, in which we have Λ� = T �Λ for
all �, with T = αV for some scale factor α > 1 and orthogonal
matrix V . Then, the Λ�−1/Λ� channel is degraded with respect
to the Λ�/Λ�+1 channel for 1 ≤ � ≤ r − 1.

Now, we recall some basics of polar codes. Let W (y|x) be
a BMS channel with input alphabet X = {0, 1} with a priori
distribution Bernoulli(1/2) and output alphabet Y ⊆ R.
Polar codes are block codes of length N = 2m with input
bits u1:N . Let I(W ) be the capacity of W . Given a rate
R < I(W ), the information bits are indexed by a set of RN
rows of the generator matrix GN = [ 1 0

1 1 ]⊗m, where ⊗ denotes
the Kronecker product. This gives an N -dimensional channel

WN (y1:N |u1:N). The channel seen by each bit [1] is given by

W
(i)
N (y1:N , u1:i−1|ui) =

∑

ui+1:N∈XN−i

1
2N−1

WN (y1:N |u1:N ).

Arıkan proved that as N grows, each channel W
(i)
N approaches

either an error-free channel or a completely noisy channel.
The set of almost completely noisy (resp. almost error-free)
subchannels is called the frozen set F (resp. information set
I). One sets ui = 0 for i ∈ F and only sends information bits
within I.

Given a priori input distribution Bernoulli(1/2), the error
probability of channel W with transition probability PY |X
under maximum-likelihood decision is given by

Pe(W ) =
1
2

∑

y

min{PY |X(y|0), PY |X(y|1)}.

The Bhattacharyya parameter serves as an upper bound on
Pe(W ).

Definition 2 (Bhattacharyya Parameter for Symmetric
Channel [1]): Given a BMS channel W with transition
probability PY |X , the Bhattacharyya parameter Z ∈ [0, 1] is
defined as

Z(W ) �
∑
y

√
PY |X(y|0)PY |X(y|1).

The rule of SC decoding is defined as

ûi =

⎧
⎪⎨

⎪⎩
0 i ∈ F or

W
(i)
N (y1:N , û1:i−1|0)

W
(i)
N (y1:N , û1:i−1|1)

≥ 1 when i ∈ I,

1 otherwise.

Let PB denote the block error probability of a binary
polar code under SC decoding. It has been proved in [1] that
PB can be upper-bounded by the sum of the decoding error
probability of the genie-aided SC decoder for each information
bit, i.e., PB ≤ Σi∈IZ(W (i)

N ). It is worth mentioning that there
are some other decoding methods such as belief propagation
decoding [21] and list decoding [22], which perform better
than SC decoding. However, in this work, we focus on SC
decoding because it is sufficient to show that polar lattices are
able to achieve the capacity of AWGN channels.

It was shown in [19] and [23] that for any β < 1
2 ,

lim
m→∞

1
N

∣∣∣{i : Z(W (i)
N ) < 2−Nβ}

∣∣∣ = I(W )

lim
m→∞

1
N

∣∣∣{i : I(W (i)
N ) > 1 − 2−Nβ}

∣∣∣ = I(W ).

This means that the fraction of good channels approaches to
I(W ) as m → ∞. Therefore, constructing polar codes is
equivalent to choosing the good indices.

Let P(N, k�) denote the component polar code for the
Λ�−1/Λ� partition channel (1 ≤ � ≤ r), where k� is
the size of its information set and N is the block length.
We stack them as in Construction D to build the polar lattice.
The following lemma shows that these component codes
are nested, which guarantees that the multilevel construction
creates a lattice [17]. Two rules may be used to determine the
component codes. One is the capacity rule [17], [24], where
the channel indices are selected according to a threshold on the
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mutual information. The other is the equal-error-probability
rule [24], namely, the same error probability for each level,
where we select the channel indices according to a threshold
on the error probability or the Bhattacharyya parameter. The
advantage of the equal-error-probability rule is that it gives
an estimate of the error probability. For this reason, we use
the equal-error-probability rule in this paper. It is well known
that the polar codes constructed according to these two rules
converge to each other as the block length goes to infinity [1].

Lemma 4: For the equal-error-probability rule based on
either the error probability or the Bhattacharyya parameter,
the component polar codes built in the multilevel construction
are nested, i.e., P(N, k1) ⊆ P(N, k2) ⊆ · · · ⊆ P(N, kr).

Proof: Firstly, consider the equal-error-probability rule
based on the Bhattacharyya parameter. By [23, Lemma 4.7],
if a BMS channel V is a degraded version of W , then the
subchannel V

(i)
N is also degraded with respect to W

(i)
N and

Z(V (i)
N ) ≥ Z(W (i)

N ). Let the threshold be 2−Nβ

for some
β < 1/2. The codewords are generated by x1:N = uIGI ,
where GI is the submatrix of G whose rows are indexed by
information set I. The information sets for these two channels
are respectively given by

{
IW = {i : Z(W (i)

N ) < 2−Nβ},
IV = {i : Z(V (i)

N ) < 2−Nβ}.

Due to the fact that Z(V (i)
N ) ≥ Z(W (i)

N ), we have IV ⊆
IW . If we construct polar codes P(N, |IW |) over W and
P(N, |IV |) over V , GIV is a submatrix of GIW . Therefore
P(N, |IV |) ⊆ P(N, |IW |).

From Lemma 3, the channel of the �-th level is always
degraded with respect to the channel of the (� + 1)-th level,
and consequently, P(N, k�) ⊆ P(N, k�+1), for 1 ≤ � < r.

Then, consider the selection based on the error probability
itself. The nesting relation still holds. This is because, by [25,
Lemma 3], Pe(V

(i)
N ) ≥ Pe(W

(i)
N ) since V

(i)
N is degraded with

respect to W
(i)
N . �

However, the complexity of exact code construction for a
BMS channel with a continuous output alphabet appears to
be exponential in the block length. A quantization method
was proposed in [25] which transforms a BMS channel with a
continuous output alphabet to one with a finite output alphabet.
Also, the authors of [26] proposed an approximation method
to construct polar codes efficiently over any BMS channel.
We follow these methods to construct polar codes for the
Λ�−1/Λ� channel. Details can be found in [27].

C. AWGN Goodness

By combining the previous lemmas, we arrive at the main
result of this section:

Theorem 1: Construct polar lattice L with the n-
dimensional binary lattice partition chain Λ/Λ1/ · · · /Λr−1/Λ�

and r nested polar codes of block length N , where r =
O(log N) such that �Λ(σ) = O(e−N ) and Pe(Λ�, σ2) =
O(e−N ). For any 0 < β < 1/2, the error probability of L

under multistage decoding is bounded by

Pe(L, σ2) ≤ rN2−Nβ

+ N

(
1 −

∫

V(Λ′)
fσ2(x)dx

)
, (11)

with the logarithmic VNR bounded by (8). Then, L is AWGN-
good, i.e., Pe(L, σ2) → 0 as N → ∞ for arbitrary VNR
greater than 2πe.

Proof: The fact that the component polar codes are nested
is due to Lemma 4, while the condition r = O(log N) is
due to Lemma 2. The error probability bound (11) comes
from (5). For a threshold 2−Nβ

of the Bhattacharyya para-
meter, the block error probability of a polar code with SC
decoding is upper-bounded by N2−Nβ

, which gives the first
term on the right-hand side of (11). The second term of (11)
is due to the union bound. Since both terms of (11) vanish as
block length N grows, Pe(L, σ2) → 0.

Then we analyze the VNR. By Lemma 1, we have �1 =
C(Λ, σ2) ≤ log(e) · �Λ(σ) = O(e−N ). Also, the capacity
loss �3 can be arbitrarily small as N → ∞. Plugging these
into (8), we can make log

(
γL(σ)
2πe

)
arbitrarily close to 0 as

N → ∞. �
Remark 2: In practice, if the target error probability is fixed

(e.g., 10−5), r can be a small integer, namely, r does not have
to scale as log N . Thus, the essential condition is N → ∞.
Particularly, our example in Section IV shows that r = 2
is sufficient for a target error probability around 10−5 when
σ = 0.3380.

IV. POLARIZATION-BASED GAUSSIAN SHAPING

To achieve the capacity of the power-constrained Gaussian
channel, we can apply Gaussian shaping over the polar lat-
tice L. However, it appears difficult to do so directly. In this
section, we will apply Gaussian shaping to the top lattice Λ
instead, which is more friendly for implementation. This is
motivated by [6, Th. 2], which implies that one may construct
a capacity-achieving lattice code from a good constellation.
More precisely, one may choose a low-dimensional top lattice
such as Z and Z

2 whose mutual information has a negligible
gap to the channel capacity as bounded in [6, Theorem 2],
and then construct a multilevel code to achieve the capacity.
We will show that this strategy is equivalent to implementing
Gaussian shaping over the AWGN-good polar lattice.

A. Asymmetric Channels in Multilevel Lattice Coding

By [6, Theorem 2], we choose a constellation DΛ,σs

such that the flatness factor �Λ (σ̃) is negligible,
where σ̃ = σsσ√

σ2
s+σ2

. Let the binary partition chain

Λ/Λ1/ · · · /Λr−1/Λ�/ · · · be labelled by bits X1, · · · , Xr, · · · .
Then, DΛ,σs induces a distribution PX1:r whose limit
corresponds to DΛ,σs as r → ∞. An example for DZ,σs

for σs = 3 is shown in Figure 1. In this case, a shaping
constellation with M = 32 (r = 5) points are actually
sufficient, since the total probability of these points is rather
close to 1.
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Fig. 1. Lattice Gaussian distribution DZ,σs and the associated labelling. A probability P (X1, X2, . . . , Xi) in (b) is given by that of the coset indexed by
bits X1, X2, . . . , Xi; for example, P (X1 = 1, X2 = 0) =

�
λ∈ 4Z+1 Pr(λ), where Pr(·) denotes the probability mass function of DZ,σs .

By the chain rule of mutual information

I(Y ; X1:r) =
r∑

�=1

I(Y ; X�|X1:�−1), (12)

we obtain r binary-input channels W� for 1 ≤ � ≤ r. Given
x1:�−1, denote again by A�(x1:�) the coset of Λ� indexed by
x1:�−1 and x�. According to [24], the channel transition PDF
of the �-th channel W� is given by

PY |X�,X1:�−1(y|x�, x1:�−1)

=
1

P{A�(x1:�)}
∑

a∈A�(x1:�)

P (a)PY |A(y|a)

=
1

fσs(A�(x1:�))

∑

a∈A�(x1:�)

1
2πσσs

exp

(
−‖y − a‖2

2σ2
−‖a‖2

2σ2
s

)

= exp

(
− ‖y‖2

2(σ2
s + σ2)

)
1

fσs(A�(x1:�))
1

2πσσs

∑

a∈A�(x1:�)

× exp

(
−σ2

s + σ2

2σ2
sσ2

∥∥∥∥
σ2

s

σ2
s + σ2

y − a

∥∥∥∥
2
)

= exp

(
− ‖y‖2

2(σ2
s + σ2)

)
1

fσs(A�(x1:�))
1

2πσσs

∑

a∈A�(x1:�)

×exp

(
−‖αy − a‖2

2σ̃2

)
. (13)

where α = σ2
s

σ2
s+σ2 is the MMSE coefficient. In general, W�

is asymmetric with the input distribution PX�|X1:�−1 unless
fσs(A�(x1:�))/fσs(A�−1(x1:�−1)) ≈ 1

2 , which means that
�Λ�

(σs) is negligible.
For a finite power, the number of levels does not need to

be large. The following lemma shows in a quantitative manner
how large r should be in order to achieve the channel capacity.
The proof can be found in [27].

Lemma 5: There exists r = O(log log N) such
that using the first r levels only incurs a capacity
loss

∑
�>r I(Y ; X�|X1:�−1) = O( 1

N ).

Remark 3: The condition r = O(log log N) is of theoret-
ical interest, similarly to the condition r = O(log N) in the
AWGN-good setting (Lemma 2). In practice, r can be a small
constant so that the different between I(Y ; X1:r) and capacity
is negligible, as we will see from the example in the next
section. Note that the relaxed condition on r is thankfully due
to the power constraint. Unlike the AWGN-good setting, here
we no longer have the term Pe(Λ�N , σ2) in the upper bound
of the error probability, since the bottom lattice Λ� does not
carry any message.

B. Polar Codes for Asymmetric Channels

Since the component channels are asymmetric, we need
polar codes for asymmetric channels to achieve their capacity.
Fortunately, polar codes for the binary memoryless asymmet-
ric (BMA) channels have been introduced in [28] and [29]
recently.

Definition 3 (Bhattacharyya Parameter for BMA Channel
[28], [30]): Let W be a BMA channel with input X ∈
X = {0, 1} and output Y ∈ Y , and let PX and PY |X
denote the input distribution and channel transition probability,
respectively. The Bhattacharyya parameter Z for channel W
is the defined as

Z(X |Y ) = 2
∑

y

PY (y)
√

PX|Y (0|y)PX|Y (1|y)

= 2
∑

y

√
PX,Y (0, y)PX,Y (1, y).

Note that this definition reduces to that for the BMS channel
when PX is uniform.

The next lemma shows that adding an observable at the
output of W will not increase Z . Its proof is omitted due to
space limitation, and can be found in [27].

Lemma 6 (Conditioning Reduces Bhattacharyya Parameter
Z): Let (X, Y, Y �) ∼ PX,Y,Y ′ , X ∈ X = {0, 1}, Y ∈ Y,
Y � ∈ Y �, we have

Z(X |Y, Y �) ≤ Z(X |Y ).
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Fig. 2. The relationship between the asymmetric channel W and the
symmetrized channel W̃ .

Let X1:N and Y 1:N be the input and output vector after N
independent uses of W . For simplicity, denote the distribution
of (X i, Y i) by PXY = PXPY |X for i ∈ [N ]. The following
property of the polarized random variables U1:N = X1:NGN

is well known.
Theorem 2 (Polarization of Random Variables [28]): For

any β ∈ (0, 1/2),

lim
N→∞

1
N

∣∣∣∣
{
i : Z(U i|U1:i−1) ≥ 1 − 2−Nβ

}∣∣∣∣ = H(X),

lim
N→∞

1
N

∣∣∣∣
{
i : Z(U i|U1:i−1) ≤ 2−Nβ

}∣∣∣∣ = 1 − H(X),

lim
N→∞

1
N

∣∣∣∣
{
i : Z(U i|U1:i−1, Y 1:N )≥1−2−Nβ

}∣∣∣∣=H(X |Y ),

lim
N→∞

1
N

∣∣∣∣
{

i : Z(U i|U1:i−1, Y 1:N)≤2−Nβ
}∣∣∣∣=1−H(X |Y ),

(14)

and

lim
N→∞

1
N

|{i : Z(U i|U1:i−1, Y 1:N) ≤ 2−Nβ

and Z(U i|U1:i−1) ≥ 1 − 2−Nβ}| = I(X ; Y ),

lim
N→∞

1
N

|{i : Z(U i|U1:i−1, Y 1:N) ≥ 2−Nβ

or Z(U i|U1:i−1) ≤ 1 − 2−Nβ}| = 1 − I(X ; Y ). (15)
The Bhattacharyya parameter for asymmetric models was

originally defined for distributed source coding in [30]. By the
duality between channel coding and source coding, it can be
also used to construct capacity-achieving polar codes for BMA
channels [28]. Actually, Z(U i|U1:i−1) is the Bhattacharyya
parameter for a single source X (without side information).

The Bhattacharyya parameter of a BMA channel can be
related to that of a symmetric channel. To this aim, we use
a symmetrization technique which creates a BMS channel W̃
from the BMA channel W [23], [28].

Lemma 7: (Symmetrization): Let W̃ be a binary-input chan-
nel with input X̃ ∈ X = {0, 1} and output Ỹ ∈ Y × X , built
from the asymmetric channel W by treating X̃ as the new
input and X̃⊕X as an additional output, as shown in Figure 2.
Then W̃ is a binary-input symmetric channel in the sense that
PỸ |X̃(y, x ⊕ x̃|x̃) = PY,X(y, x). Therefore, the optimal input

distribution of W̃ is the uniform distribution.
The following theorem connects the Bhattacharyya Parame-

ter of a BMA channel W and that of the symmetrized channel
W̃ . Denote by WN and W̃N the combining channels of N uses
of W and W̃ , respectively.

Theorem 3: (Connection Between Bhattacharyya Parame-
ters [28]): Let X̃1:N and Ỹ 1:N =

(
Y 1:N , X1:N ⊕ X̃1:N

)

be the input and output vectors of W̃ , respectively, and let
U1:N = X1:NGN and Ũ1:N = X̃1:NGN . The Bhattacharyya
parameter of each subchannel of WN is equal to that of each
subchannel of W̃N , i.e.,

Z(U i|U1:i−1, Y 1:N ) = Z̃(W̃ (i)
N )

= Z(Ũ i|Ũ1:i−1, Y 1:N , X1:N ⊕ X̃1:N).
Now, we are in a position to construct polar codes for the

BMA channel. Define the frozen set F̃ and information set Ĩ
of the symmetric polar codes as follows:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

frozen set: F̃
= {i ∈ [N ] : Z(U i|U1:i−1, Y 1:N ) > 2−Nβ}

information set: Ĩ
= {i ∈ [N ] : Z(U i|U1:i−1, Y 1:N ) ≤ 2−Nβ}.

(16)

By Theorem 3, the Bhattacharyya parameters of the sym-
metrized channel W̃ and the asymmetric channel W are the
same. However, the channel capacity of W̃ is I(X̃ ; X ⊕
X̃) + I(X̃ ; Y |X ⊕ X̃) = 1 − H(X) + I(X ; Y ), which is
1 − H(X) more than the capacity of W . To obtain the
real capacity I(X ; Y ) of W , the input distribution of W
needs to be adjusted to PX . By polar lossless source coding,
the indices with very small Z(U i|U1:i−1) should be removed
from the information set Ĩ of the symmetrized channel, and
the proportion of this part is 1−H(X) as N → ∞. We name
the remaining set as the information set I of the asymmetric
channel W . Further, there are some bits which are uniformly
distributed and can be made independent from the information
bits; we name this set as the frozen set F . In order to
generate the desired input distribution PX , the remaining bits
are determined by the bits in F ∪ I; we call it the shaping
set S. This process is depicted in Figure 3. We formally define
the three sets as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

frozen set: F
= {i ∈ [N ] : Z(U i|U1:i−1, Y 1:N ) ≥ 1 − 2−Nβ}

information set: I
= {i ∈ [N ] : Z(U i|U1:i−1, Y 1:N ) ≤ 2−Nβ

and

Z(U i|U1:i−1) ≥ 1 − 2−Nβ}
shaping set: S = (F ∪ I)c

.

(17)

To find these sets, one can use Theorem 3 to calculate
Z(U i|U1:i−1, Y 1:N ) with the known technique for symmetric
polar codes [25]. We note that Z(U i|U1:i−1) can be computed
in a similar way: one constructs a symmetric channel between
X̃ and X ⊕ X̃ , which is actually a binary-input symmetric
channel with cross-over probability PX(x = 1). The above
construction is equivalent to implementing shaping over the
polar code for the symmetrized channel W̃ .

Besides the construction, the decoding can also be converted
to that of the symmetric polar code. If X1:N ⊕ X̃1:N = 0,
we have U1:N = Ũ1:N , which means the decoding result of
U1:N equals to that of Ũ1:N . Thus, decoding of the polar code
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Fig. 3. Polarization for symmetric and asymmetric channels.

for W can be treated as decoding of the polar code for W̃
given that X ⊕ X̃ = 0. Clearly, the SC decoding complexity
for asymmetric channel is also O(N log N). We summarize
this observation as the following lemma. The proof can be
found in [28].

Lemma 8: (Decoding for Asymmetric Channel [28]): Let
y1:N be a realization of Y 1:N and û1:i−1 be the previ-
ous i − 1 estimates of u1:N . The likelihood ratio of ui is
given by

PUi|U1:i−1,Y 1:N (0|û1:i−1, y1:N)
PUi|U1:i−1,Y 1:N (1|û1:i−1, y1:N)

=
W̃

(i)
N ((y1:N , 01:N), û1:i−1|0)

W̃
(i)
N ((y1:N , 01:N), û1:i−1|1)

, (18)

where W̃
(i)
N denotes the transition probability of the i-th

subchannel of W̃N .
In [28], the bits in F ∪ S are all chosen according to

PUi|U1:i−1(ui|u1:i−1), which can also be calculated using (18)
(treating Y as an independent variable and remove it). How-
ever, in order to be compatible with polar lattices, we modify
the scheme such that the bits in F are uniformly distributed
over {0, 1} while the bits in S are still chosen according to
PUi|U1:i−1(ui|u1:i−1). The expectation of the decoding error
probability still vanishes with N . The following theorem is an
extension of the result in [28, Th. 3].

Theorem 4: Consider a polar code with the
following encoding and decoding strategies for a BMA
channel.

• Encoding: Before sending the codeword x1:N =
u1:NGN , the index set [N ] are divided into three parts:
the frozen set F , the information set I and the shaping
set S which are defined in (17). The encoder places
uniformly distributed information bits in I, and fills F
with a uniform random {0, 1} sequence which is shared
between the encoder and the decoder. The bits in S are
generated by a mapping φS � {φi}i∈S in the family
of randomized mappings ΦS , which yields the following
distribution:

ui = φi(u1:i−1)

=

{
0 with probability PUi|U1:i−1(0|u1:i−1),

1 with probability PUi|U1:i−1(1|u1:i−1).

• Decoding: The decoder receives y1:N and estimates û1:N

of u1:N according to the rule

ûi =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ui, if i ∈ F
φi(û1:i−1), if i ∈ S
argmax

u
PUi|U1:i−1,Y 1:N

(u|û1:i−1, y1:N), if i ∈ I.

With the above encoding and decoding, the message rate
can be arbitrarily close to I(X ; Y ) and the expectation of
the decoding error probability over the randomized mappings
satisfies EΦS [PSC

e (φS)] = O(2−Nβ′
) for β� < β < 0.5,

where β is used to choose the frozen set, the information set,
and the shaping set as in (17).

By an averaging argument, there exists a deterministic map-
ping φS such that Pe(φS) = O(2−Nβ′

). However, it is difficult
to actually find such a deterministic mapping. In practice,
we may share a random mapping φS between the encoder
and decoder, i.e., let them have access to the same source of
randomness (e.g., using the same seed for the pseudorandom
number generators).

C. Multilevel Polar Codes

Next, our task is to construct polar codes to achieve the
mutual information I(Y ; X�|X1:�−1) for all levels. The con-
struction of the preceding subsection is readily applicable to
the construction for the first level W1. To demonstrate the
construction for other levels, we take the channel of the second
level W2 as an example. This is also a BMA channel with input
X2 ∈ X = {0, 1}, output Y ∈ Y and side information X1. Its
channel transition probability is shown in (13). To construct
a polar code for the second level, we propose the following
two-step procedure.

Step 1:
1) Construct a polar code for the BMS channel with

input vector X̃1:N
2 = [X̃1

2 , X̃2
2 , · · ·, X̃N

2 ] and output

vector Ỹ 1:N =
(
X1:N

2 ⊕ X̃1:N
2 , Y 1:N , X1:N

1

)
where

X̃ i
2 ∈ X = {0, 1} is uniformly distributed. At this

step X1 is regarded as a part of the outputs. Then
the distribution of X2 becomes the marginal distribu-
tion

∑
x1,x3:r

PX1:r (x1:r). Consider polarized random
variables U1:N

2 = X1:N
2 GN and Ũ1:N

2 = X̃1:N
2 GN .

According to Theorem 2, the polarization gives us the
three sets F2, I �

2 and S�
2 as shown in Figure 4. Similarly,

we can prove that |I′
2|

N → I(Y, X1; X2) and |F2∪S′
2|

N →
1 − I(Y, X1; X2) as N → ∞. These three sets are
defined as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

frozen set: F2 = {i∈ [N ] :

Z(U i
2|U1:i−1

2 , Y 1:N , X1:N
1 )≥1−2−Nβ}

information set: I �
2

= {i ∈ [N ] : Z(U i
2|U1:i−1

2 , Y 1:N , X1:N
1 )≤2−Nβ

and Z(U i
2|U1:i−1

2 ) ≥ 1 − 2−Nβ}
shaping set: S�

2 = (F2 ∪ I�
2)

c
.

(19)
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Fig. 4. The first step of polarization in the construction for the second level.

Fig. 5. The second step of polarization in the construction for the second
level.

2) Treat X1:N
1 as the side information for the encoder.

Given X1:N
1 , the choices of X1:N

2 are further
restricted since X1 and X2 are generally corre-
lated, i.e., PX1,X2(x1, x2) = fσs(A(x1, x2))/fσs(Λ)
(cf. Figure 1). By removing from I �

2 the bits which are
almost deterministic given U1:i−1

2 and X1:N
1 , we obtain

the information set I2 for W2. Then the distribution
of the input X2 becomes the conditional distribution
PX2|X1(x2|x1). The process is shown in Figure 5. More
precisely, the indices are divided into three portions as
follows:

1 = 1 − I(X̃2; X̃2 ⊕ X2, X1, Y )︸ ︷︷ ︸
|F2|/N

+I(X̃2; X̃2 ⊕ X2, X1, Y )
Step1
= 1 − I(X̃2; X̃2 ⊕ X2, X1, Y )︸ ︷︷ ︸

|F2|/N

+ I(X̃2; X̃2 ⊕ X2)︸ ︷︷ ︸
|S′

2|/N

+ I(X̃2; X1, Y |X̃2 ⊕ X2)︸ ︷︷ ︸
|I′

2|/N

Step2
= 1 − I(X̃2; X̃2 ⊕ X2, X1, Y )︸ ︷︷ ︸

|F2|/N

+ 1 − H(X2)︸ ︷︷ ︸
|S′

2|/N

+ I(X2; X1)︸ ︷︷ ︸
|SX1 |/N

+ I(X2; Y |X1)︸ ︷︷ ︸
|I2|/N

= 1 − I(X̃2; X̃2 ⊕ X2, X1, Y )︸ ︷︷ ︸
|F2|/N

+ 1 − H(X2|X1)︸ ︷︷ ︸
|S2|/N

+ I(X2; Y |X1)︸ ︷︷ ︸
|I2|/N

We give the formal statement of this procedure in the
following lemma.

Lemma 9: After the first step of polarization, we obtain
the three sets F2, I �

2 and S�
2 in (19). Let SX1 denote

the set of indices whose Bhattacharyya parameters satisfy
Z(U i

2|U1:i−1
2 , Y 1:N , X1:N

1 ) ≤ 2−Nβ

, Z(U i
2|U1:i−1

2 , X1:N
1 ) ≤

1 − 2−Nβ

and Z(U i
2|U1:i−1

2 ) ≥ 1 − 2−Nβ

. The proportion of
SX1 is asymptotically given by limN→∞

|SX1 |
N = I(X2; X1).

Then by removing SX1 from I �
2, we obtain the desired

information set I2 corresponding to the mutual information
I(X2; Y |X1) associated with W2. Formally, the three sets are
obtained as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

frozen set:

F2 = {i∈ [N ] :Z(U i
2|U1:i−1

2 , Y 1:N , X1:N
1 )≥1−2−Nβ}

information set:

I2 = {i ∈ [N ] : Z(U i
2|U1:i−1

2 , Y 1:N , X1:N
1 ) ≤ 2−Nβ

and Z(U i
2|U1:i−1

2 , X1:N
1 ) ≥ 1 − 2−Nβ}

shaping set: S2 = (F2 ∪ I2)
c .

(20)

Proof: Firstly, we show the proportion of set SX1

goes to I(X1; X2) as N → ∞. Here we define a slightly
different set S�

X1
= {i ∈ [N ] : Z(U i

2|U1:i−1
2 , X1:N

1 ) ≤
2−Nβ

and Z(U i
2|U1:i−1

2 ) ≥ 1 − 2−Nβ}. Suppose we are
constructing an asymmetric polar code for the channel from

X1 to X2; it is not difficult to find that limN→∞
|S′

X1
|

N =
I(X2; X1) by Theorem 4. Furthermore, by Lemma 6,
if Z(U i

2|U1:i−1
2 , X1:N

1 ) ≤ 2−Nβ

, we can immediately have
Z(U i

2|U1:i−1
2 , X1:N

1 , Y 1:N) ≤ 2−Nβ

. Therefore, the differ-
ence between the definitions of SX1 and S�

X1
only lies on

Z(U i
2|U1:i−1

2 , X1:N
1 ). Denoting by P̄X1 the unpolarized set

with 2−Nβ ≤ Z(U i
2|U1:i−1

2 , X1:N
1 ) ≤ 1 − 2−Nβ

, we have

lim
N→∞

( |SX1 |
N

− |S�
X1

|
N

)
≤ lim

N→∞
|P̄X1 |

N
= 0. (21)

As a result, limN→∞
|SX1 |

N = limN→∞
|S′

X1
|

N = I(X2; X1).
Secondly, we show that SX1 ∪ I2 = I �

2. According to
the definitions of SX1 and I2, we note that SX1 ∩ I2 = ∅.
By Lemma 6, if Z(U i

2|U1:i−1
2 , X1:N

1 ) ≥ 1 − 2−Nβ

, we get
Z(U i

2|U1:i−1
2 ) ≥ 1 − 2−Nβ

and the difference between the
definitions of SX1 and I �

2 only lies on Z(U i
2|U1:i−1

2 , X1:N
1 ).

Observe that the union SX1 ∪ I2 would remove the condition
on Z(U i

2|U1:i−1
2 , X1:N

1 ), and accordingly we have SX1 ∪I2 =
I �

2. It can be also found that the proportion of I2 goes to
I(X2; Y |X1) as N → ∞. �

We summarize our main results in the following theorem:
Theorem 5: (Coding Theorem for Multilevel Polar Codes):

Consider a polar code with the following encoding and decod-
ing strategies for the channel of the second level W2 with
the channel transition probability PY |X2,X1(y|x2, x1) shown
in (13).

• Encoding: Before sending the codeword x1:N
2 =

u1:N
2 GN , the index set [N ] are divided into three parts:

the frozen set F2, information set I2, and shaping set
S2 according to (20). The encoder first places uniformly
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distributed information bits in I2. Then the frozen set
F2 is filled with a uniform random sequence which are
shared between the encoder and the decoder. The bits in
S2 are generated by a mapping φS2 � {φi}i∈S2 form a
family of randomized mappings ΦS2 , which yields the
following distribution:

ui
2 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 with probability PUi
2|U1:i−1

2 ,X1:N
1

× (0|u1:i−1
2 , x1:N

1 ),
1 with probability PUi

2|U1:i−1
2 ,X1:N

1

× (1|u1:i−1
2 , x1:N

1 ).

(22)

• Decoding: The decoder receives y1:N and estimates û1:N
2

based on the previously recovered x1:N
1 according to the

rule

ûi
2 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ui
2, if i ∈ F2

φi(û1:i−1
2 ), if i ∈ S2

argmax
u

PUi
2|U1:i−1

2 ,X1:N
1 ,Y 1:N

× (u|û1:i−1
2 , x1:N

1 , y1:N ), if i ∈ I2.

With the above encoding and decoding, the message rate can
be arbitrarily close to I(Y ; X2|X1) and the expectation of
the decoding error probability over the randomized mappings
satisfies EΦS2

[PSC
e (φS2)] = O(2−Nβ′

) for any 0 < β� < β <
0.5, where β is used to choose the frozen set, the information
set, and the shaping set as in (20).

Note that probability PUi
2|U1:i−1

2 ,X1:N
1 ,Y 1:N can be calculated

by (18) efficiently, treating Y and X1 (already decoded by
the SC decoder at level 1) as the outputs of the asymmetric
channel. Again, there exists a deterministic mapping φS2 such

that PSC
e (φS2) = O(2−Nβ′

).
Obviously, Theorem 5 can be generalized to the construction

of a polar code for the channel of the �-th level W�. The
only difference is that the side information changes from
X1:N

1 to X1:N
1:�−1. As a result, we can construct a polar code

which achieves a rate arbitrarily close to I(Y ; X�|X1:�) with
vanishing error probability.

D. Achieving Channel Capacity

So far, we have constructed polar codes to achieve the
capacity of the induced asymmetric channels for all levels.
Since the sum capacity of the component channels nearly
equals the mutual information I(Y ; X), and since we choose
a good constellation such that I(Y ; X) ≈ 1

2 log(1 + SNR),
we have constructed a lattice code to achieve the capacity of
the Gaussian channel. We summarize the construction in the
following theorem:

Theorem 6: Choose a good constellation with negligible
flatness factor �Λ(σ̃) as in [6, Th. 2], and construct a multilevel
polar code with r = O(log log N) as above. Then, for any
SNR, the message rate approaches 1

2 log(1 + SNR), while the
error probability under multistage SC decoding is bounded by

PSC
e = O(2−Nβ′

), 0 < β� < 0.5 (23)

as N → ∞.

Remark 4: It is simple to generate a transmitted codeword
of the proposed scheme. For n = 1, let

χ =
r∑

�=1

2�−1

[
∑

i∈I�

ui
�gi +

∑

i∈S�

ui
�gi +

∑

i∈F�

ui
�gi

]
. (24)

The transmitted codeword x is drawn from D2rZN+χ, σs.
From the proof of Lemma 5, we know that the probability
of choosing a point outside of the interval [−2r−1, 2r−1] is
negligible if r is sufficiently large, which implies there exists
only one point in this interval with probability close to 1.
Therefore, one may simply transmit x = χ mod 2r, where
the modulo operation is applied component-wise with range
(−2r−1, 2r−1].

Next, we show that such a multilevel polar coding scheme
is equivalent to Gaussian shaping over a coset L + c� of a
polar lattice L for some translate c�. In fact, the polar lattice
L is exactly constructed from the corresponding symmetrized
channels W̃�. Recall that the �-th channel W� is a BMA chan-
nel with the input distribution PX�|X1:�−1 (1 ≤ � ≤ r). It is
clear that PX1:�(x1:�) = fσs(A�(x1:�))/fσs(Λ). By Lemma 7
and (13), the transition probability of the symmetrized channel
W̃� is

PW̃�
((y, x1:�−1, x� ⊕ x̃�)|x̃�)

= PY,X1:�(y, x1:�)
= PX1:�(x1:�)PY |X�,X1:�−1(y|x�, x1:�−1)

= exp
(
− ‖y‖2

2(σ2
s + σ2)

)
1

fσs(Λ)
1

2πσσs

∑

a∈A�(x1:�)

× exp

(
−‖αy − a‖2

2σ̃2

)
. (25)

Note that the difference between the asymmetric channel (13)
and symmetrized channel (25) is the a priori probability
PX1:�(x1:�) = fσs(A�(x1:�))/fσs(Λ). Comparing with the
Λ�−1/Λ� channel (10), we see that the symmetrized channel
(25) is equivalent to a Λ�−1/Λ� channel, since the common
terms in front of the sum will be completely cancelled out
in the calculation of the likelihood ratio.2 We summarize the
foregoing analysis in the following lemma:

Lemma 10: (Equivalence Lemma): Consider a multilevel
lattice code constructed from constellation DΛ,σs for a
Gaussian channel with noise variance σ2. The �-th symmetric
channel W̃� (1 ≤ � ≤ r) which is derived from the asymmet-
ric channel W� is equivalent to the MMSE-scaled Λ�−1/Λ�

channel with noise variance σ̃2.
Thus, the resultant polar codes for the symmetrized channels

are nested, and the polar lattice is AWGN-good for noise
variance σ̃2; also, the multistage decoding is performed on
the MMSE-scaled signal αy (cf. Lemma 8). Since the frozen
sets of the polar codes are filled with random bits (rather
than all zeros), we actually obtain a coset L + c� of the
polar lattice, where the shift c� accounts for the effects of
all random frozen bits. Finally, since we start from DΛ,σs ,
we would obtain DΛN ,σs

without coding; since L + c� ⊂ ΛN

2Even if y ∈ R
n in (25), the sum over A�(x1:�) is Λ�-periodic. Hence,

the likelihood ratio will be the same if one takes ȳ = y mod Λ� and
uses (10)
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Fig. 6. Channel capacity for partition chain Z/2Z/ · · · /2r
Z. The

discrete BMS approximation uses the quantization-merging algorithm with
64 quantization levels.

by construction, we obtain a discrete Gaussian distribution
DL+c′,σs over L + c�.

Remark 5: This analysis shows that our proposed scheme is
an explicit construction of lattice Gaussian coding introduced
in [6], which applies Gaussian shaping to an AWGN-good
lattice (or its coset). Note that the condition of negligible
�Λ(σ̃) in Theorem 6 implies negligible capacity C(Λ, σ̃2) of
the top lattice in the construction of the AWGN-good lattice
in Section III. Again, it is always possible to scale down
the top lattice Λ such that �Λ(σ̃) becomes negligible. Thus,
Theorem 6 holds for any SNR, meaning that we have removed
the condition SNR > e required by [6, Th. 3]. Moreover,
if a good constellation of the form DΛ−c,σs for some shift
c is used in practice (e.g., a constellation taking values in
{±1,±3, . . .}), the proposed construction holds verbatim.

V. DESIGN EXAMPLES

In this section, we give design examples of polar lattices
with and without the power constraint. The design follows
the equal-error-probability rule. Multistage SC decoding is
applied. Since the complexity of SC decoding is O(N log N),
the overall decoding complexity is O(rN log N).

A. Design Examples Without Power Constraint

Consider the one-dimensional lattice partition Z/2Z/ · · ·
/2r

Z. To construct a multilevel lattice, one needs to determine
the number of levels of lattice partitions and the actual rates
according to the the target error probability for a given noise
variance. By the guidelines given in Section III, the effective
levels are those which can achieve the target error probability
with an actual rate not too close to either 0 or 1. Therefore,
one can determine the number of effective levels with the
help of capacity curves in Fig. 6. For example, for the given
noise variance indicated by the straight line in Fig. 6, one
may choose partition Z/2Z/4Z, i.e., r = 2, which was indeed
suggested in [17].

Fig. 7. Performance comparison of lattices at dimension around 1000.

Now, we give an example for length N = 1024 and target
error probability Pe(L, σ2) = 10−5. We note that the calcula-
tion of C(Λ/Λ�, σ2) and Pe(Λ, σ2) can be simplified by the
scaling property of the partition channels as shown in the proof
of Lemma 3. For the one-dimensional partition chain, we have
C(4Z/8Z, σ2) = C(2Z/4Z, (σ

2 )2) = C(Z/2Z, (σ
4 )2), and

Pe(4Z, σ2) = Pe(2Z, (σ
2 )2) = Pe(Z, (σ

4 )2). Let σ1 = σ,
σ2 = σ/2 and σ3 = σ/4 be the equivalent Gaussian noise
deviation at the �’s level with respect to the 1st one.

Since the bottom level is a Z
N lattice decoder, σ3 ≈ 0.0845

for target error probability 1
3 ·10−5. For the middle level, σ2 =

2 · σ3 = 0.1690. From Fig. 6, the channel capacity of the
middle level is C(Z/2Z, σ2

2) = C(2Z/4Z, σ2
1) = 0.9874. For

the top level, σ = σ1 = 0.3380 and the capacity is 0.5145.
Our goal is to find two polar codes approaching the respective
capacities at block error probabilities ≤ 1

3 · 10−5 over these
binary-input mod-2 channels.

For N = 1024, we found the first polar code with rate
k1
N = 0.23 for Pe(C1, σ

2
1) ≈ 1

3 · 10−5, and the second polar
code with rate k2

N = 0.9 for Pe(C2, σ
2
2) ≈ 1

3 ·10−5. Recall that
the channel in the first level is degraded with respect to the
one at the second level according to Lemma 3, and the two
polar codes in this construction turn out to be nested. Thus,
the sum rate of component polar codes RC = 0.23 + 0.9,
implying a capacity loss �3 = 0.3719. Meanwhile, the factor
�1 = C(Z, 0.33802) = 0.0160. Therefore, the rate losses
at each level are 0.016, 0.285, and 0.087. From (8), the
logarithmic VNR is given by

log
(

γL(σ)
2πe

)
≤ 2 (�1 + �3) = 0.7758, (26)

which is 2.34 dB. It is seen from Fig. 7 that the estimate
2.34 dB is very close to the actual gap at Pe(L, σ2

1) ≈ 10−5.
This simulation indicates that the gap to the Poltyrev capacity
is largely due to the capacity losses of component codes.

Performance comparison of competing lattices approaching
the Poltyrev capacity is presented in Fig. 7, at dimension
around 1000. The polar lattice used here is constructed from
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Fig. 8. Channel capacity for each level as a function of SNR.

the aforementioned one-dimensional lattice partition (N =
1024, n = 1). The simulation curves of other lattices are taken
from their corresponding papers. Among the three types of
lattices compared, the LDPC lattice [12] has the weakest per-
formance. The LDA lattice [13] has better performance than
the polar lattice, at the expense of higher decoding complexity
O(p2N log N) if p-ary LDPC codes are employed. Assum-
ing p ≈ 2r, it would require complexity O(22rN log N),
compared to O(rN log N) of the polar lattice. The LDLC
lattice is not included in this comparison because of lack
of block error probabilities in [14]. In contrast to the polar
lattice and LDA lattice, analytic results of the LDLC are not
available; therefore, they are less understood in theory. It is
worth pointing out that the plain polar codes used in polar
lattice can be optimized in several aspects: for example, to use
a better kernel, list decoding, or even a soft-output decoding
algorithm. We leave such improvements of polar lattices to
future work.

B. Design Examples With Power Constraint

To satisfy the power constraint, we use discrete lat-
tice distribution DZ,σs for shaping. The mutual information
I(Y ; X�|X1:�−1) at each level for different SNRs is shown
in Figure 8. We can see that for partition Z/2Z/ . . ., five levels
are enough to achieve the AWGN channel capacity for SNR
ranging from −5 dB to 20 dB. Note that the actual number
of required levels depends on the SNR: a smaller number of
levels are enough for low SNRs, while a larger number of
levels is required for high SNRs (to support higher rates).

For each level, we estimate a lower bound on the code
rate for block error probability 1 × 10−5. This is done by
calculating an upper bound on the block error probability
of the polar code, using the Bhattacharyya parameter. With
this target error probability, the assignments of bits to the
information, shaping and frozen sets on different levels are
shown in Figure 9 for SNR = 15 dB and N = 216. In fact,
X1 and X2 are nearly uniform such that there is no need for
shaping on the first two levels (these levels actually correspond
to the AWGN-good lattice). The third level channel is very

Fig. 9. The proportions of the shaping set, information set, and frozen set
on each level when N = 216 and SNR = 15 dB.

Fig. 10. Lower bounds on the rates achieved by polar lattices with block
error probability 5 × 10−5 for block lengths 210, . . . , 220.

clean, and most bits are information bits. In contrast, the fifth
level is mostly for shaping; since its message rate is already
small, adding another level clearly would not contribute to
the overall rate of the lattice code. Finally, lower bounds
on the rates achieved by polar lattices with various block
lengths are shown in Figure 10. We note that the gap to the
channel capacity diminishes as N increases, and it is only
about 0.1 bits/dimension when N = 220.

VI. CONCLUSIONS

In this paper, we have constructed polar lattices to approach
the capacity of the power-constrained Gaussian channel. The
construction is based on a combination of channel polarization
and source polarization. Without shaping, the constructed
polar lattices are AWGN-good. The Gaussian shaping on a
polar lattice deals with the power constraint but is technically
more involved. Our shaping approach is different from the
standard Voronoi shaping which involves a quantization-good
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lattice [5]. The proposed Gaussian shaping does not require
such a quantization-good lattice any more. The overall scheme
is explicit and efficient, featuring quasi-linear complexity.

APPENDIX A
PROOF OF LEMMA 2

Proof: For this purpose, we assume Λ = aZ
n and Λ� =

bZn where a, b are scaling parameters to be estimated. We note
that for all partition chains in [17], this is always possible: if
the bottom lattice does not take the form of bZn, one may
simply further extend the partition chain (which will lead to
an upper bound on r).

We firstly note that the flatness factor �Λ(σ) can be made
arbitrarily small by scaling down the top lattice Λ. To see this,
we recall that �Λ(σe) ≤ [1+�Λ0(σe)]n−1 [6, Lemma 3] where
Λ0 = aZ for the afore-mentioned scaling factor a.

Let Λ∗
0 = 1

aZ be the dual lattice of Λ0. By [18, Corollary 1],
we have

�Λ0(σ) = ΘΛ∗
0
(2πσ2) − 1

=
∑

λ∈Λ∗
0

exp(−2π2σ2|λ|2) − 1

= 2
∑

λ∈ 1
a N

exp(−2π2σ2|λ|2)

≤ 2 exp(−2π2σ2 1
a2 )

1 − exp(−2π2σ2 3
a2 )

≤ 4 exp(−2π2σ2 1
a2

) for sufficiently small a. (27)

Therefore, letting 1
a =

√
N

2π2σ2 , we have �Λ0(σ) = O(e−N )
and hence �Λ(σ) = O(e−N ) for fixed n.

Secondly, by the union bound, the error probability of the
bottom lattice Λ� is upper-bounded by

Pe(Λ�, σ2) ≤ nQ

(
b

2σ

)
≤ ne−

b2

8σ2

where we apply the Chernoff bound on the Q-function. We
can obtain

Pe(Λ�, σ2) = O(e−N )

by choosing b =
√

8σ2 N for fixed n.
For a binary lattice partition, we have (b/a)n = 2r. Thus,

we conclude that

r = n log
(

b

a

)
= n log

(
2
π

N

)
≤ n log N = O(log N).

�

APPENDIX B
PROOF OF LEMMA 3

Proof: By the self-similarity of the lattice partition chain,
we can scale a Λ�−1/Λ� channel to a Λ�/Λ�+1 channel by
multiplying the output of a Λ�−1/Λ� channel with T . Since
T = αV for some scaling factor α > 1 and orthogonal matrix
V , the Gaussian noise for each dimension is still indepen-
dent of each other and the noise variance per dimension is
increased after the scaling. Therefore, a Λ�−1/Λ� channel is

stochastically equivalent to a Λ�/Λ�+1 channel with a larger
noise variance. For our design examples, a Z/2Z channel
with Gaussian noise variance σ2 is equivalent to a 2Z/4Z

channel with Gaussian noise variance 4σ2, and a Z
2/RZ

2

channel with noise variance σ2 per dimension is equivalent to
a RZ

2/2Z
2 channel with noise variance 2σ2 per dimension.

Proof is completed by observing that a Λ�/Λ�+1 channel with
noise variance σ2

2 is degraded with respect to a Λ�/Λ�+1

channel with noise variance σ2
1 if σ2

1 ≤ σ2
2 . �
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